Report of the West Valley Erosion Working Group

Study 2: Recent Erosion and Deposition Processes

Task 2.2: Infiltration and Soil Moisture Determination

Task 2.5: Erodibility of Cohesive Sediment

Task 2.6: Erodibility of Clastic Sediment in Selected Gullies, Stream Channels, and Streambanks

WEST VALLEY DEMONSTRATION PROJECT AND WESTERN NEW YORK NUCLEAR SERVICE CENTER

Submitted to:

United States Department of Energy, and New York State Energy Research and Development Authority

Prepared By:

Dr. Sean J. Bennett Member, WV Phase 1 Studies EROSION WORKING GROUP

Enviro Compliance Solutions, Inc. (ECS) Contract Number DE-EM0002446/0920/13/DE-DT0005364/001

March 1, 2017

Report of the West Valley Erosion Working Group

Study 2: Recent Erosion and Deposition Processes
Task 2.2: Infiltration and Soil Moisture Determination
Task 2.5: Erodibility of Cohesive Sediment
Task 2.6: Erodibility of Clastic Sediment in Selected Gullies,
Stream Channels, and Streambanks

West Valley Demonstration Project (WVDP) and Western New York Nuclear Service Center (WNYNSC)

Phase 1 Studies EROSION WORKING GROUP:

Sean Bennett, Ph.D. Dept. of Geography, State University of New York at Buffalo

Sandra Doty, M.S., P.E. Consulting Geological Engineer

Robert Fakundiny, Ph.D. New York State Geologist, Emeritus

Greg Tucker, Ph.D. Dept. of Geological Sciences, University of Colorado

Michael Wilson, Ph.D. Dept. of Geosciences, State University of New York at

Fredonia

Richard Young, Ph.D. Dept. of Geological Sciences, State University of New York at

Geneseo

ECS Study Area Manager:

Michael Wolff, P.G., C.E.G.

This report has been peer-reviewed and accepted by the West Valley Erosion Working Group, and is formally submitted to:

United States Department of Energy, and

New York State Energy Research and Development Authority

EXECUTIVE SUMMARY

Enviro Compliance Solutions, Inc. and the West Valley Erosion Working Group recommended an erosion assessment to be performed as part of the Phase 1 Studies at the West Valley Demonstration Project and Western New York Nuclear Service Center. These studies seek to improve forecasts of future erosion at this facility, which includes a focus on recent erosion and deposition processes. The EWG identified a list of environmental parameters that would reduce uncertainties in predicting future erosion using a landscape evolution model (WVDP Erosion Working Group, 2015), and these included soil-infiltration capacities measured using a double-ring infiltrometer (Task 2.2), soil/till-detachment thresholds quantified using the Jet Erosion Test (Task 2.5), and bed-sediment entrainment thresholds determined using Wolman pebble counts (Task 2.5). The infiltration and erodibility studies were performed in trenches dug by the EWG activities in support of Study 1 - Terrain Analysis, Age Dating, and Paleoclimate, and restricted in space to the Heinz Creek Terrace, the Tree Farm Terrace, and the Abandoned Meander Terrace. Pebble counts were conducted in several streams near the facility, but outside the Access Prohibited Area. The objective of this report is to summarize these field activities and to tabulate and interpret all data collected.

A total of 36 soil moisture measurements were obtained and 37 infiltration studies were conducted at the three field locations noted above. Soil moisture rates varied from 2.2±0.5% for the coarsest-grained, most unconsolidated sediment to 47.8±2.3% for the finest-grained, most consolidated sediment. Infiltration rates varied from 0.5±0.9 mm/hr (0.32±0.59 m³/yr) for the finest-grained, most consolidated sediment to 852.7±59.6 mm/hr (545.01±38.08 m³/yr) for the coarsest-grained, most unconsolidated sediment. The infiltration data were aggregated to place these into a landscape perspective. An ensemble average of all measurements produced an infiltration rate of 32.8±59.1 mm/hr (20.98±37.8 m³/yr). Infiltration rates also were aggregated into discrete 25-ft elevations and averaged, which produced variable rates ranging from 0.9±0.06 mm/hr (0.59±0.05 m³/yr) for the 1275 to 1300 ft interval to 78.4±84.6 mm/hr (50.14±54.08 m³/yr) for the 1225 to 1250 ft interval. Lastly, a frequency analysis of the infiltration rate data showed that about 58% of all measurements fell below a rate of 10 mm/hr (5.88 m³/yr). An average infiltration rate using just these selected observations produced a value of 2.1±2.1 mm/hr (1.33±1.37 m³/yr).

A total of 37 JET datasets were deemed acceptable for the assessment of glacial sediment erodibility. Using the Scour Depth Solution method, which produced the lowest erosion rate prediction error, values of the critical tractive shear stress τ_c ranged from 11.59 ± 0.70 to 90.16 ± 5.41 Pa, and values for the erodibility coefficient k_d ranged from 0.16 ± 0.02 to 7.93 ± 0.79 cm³/N-s. Erodibility indices also were aggregated to place these data into a landscape perspective. Ensemble averaging of all measurements produced values of 41.73 ± 16.40 Pa for τ_c and 2.05 ± 1.75 cm³/N-s for k_d . Erodibility indices were aggregated into discrete 25-ft elevations and averaged, which produced variable values of τ_c with elevation ranging from 35.53 ± 5.69 Pa for the 1350 to 1375 elevation interval to 76.88 ± 12.30 Pa for the 1200 to 1225 elevation interval. This approach also produced variable values of k_d with elevation ranging from 0.15 ± 0.02 cm³/N-s for the 1200 to 1225 elevation interval to

5.40 \pm 0.86 cm³/N-s for the 1350 to 1375 elevation interval. A frequency analysis of the τ_c data showed that 75% of the measurements fell within the range of 30 to 60 Pa, and when averaged, produced values of 41.70 \pm 7.60 Pa for τ_c and 1.76 \pm 1.20 cm³/N-s for k_d .

A total of 49 pebble counts were conducted in and near the WNYNSC along major and minor creeks as well as two locations on Cattaraugus Creek. These results showed that bed surface grain size varied from sands (less than 2 mm in diameters) to boulders (between 256 to 512 mm), with a median grain size of 53 ± 18 mm. Additional analysis of longitudinal trends in surface grain size percentiles along Heinz Creek, Gooseneck Creek, and Buttermilk Creek did not show any statistically significant variation, and a Pearson correlation analysis identified those datasets that showed the weakest correlations within the population (13 in total). Given this information, an aggregated grain size distribution representative of the WNYNSC produced the following percentiles: $D_{10} = 11$ mm, $D_{16} = 17$ mm, $D_{50} = 47$ mm, $D_{84} = 117$ mm, $D_{90} = 154$ mm, and $D_{95} = 225$ mm.

These on-site determinations of infiltration rate, erodibility indices of the glacial materials, and stream bed grain size distributions agree well with previous work as well as those analyses presented in the Final Environmental Impact Statement (2010). It is envisioned that these data will further constrain the input parameters to numerically simulate landscape evolution at the WVDP and to reduce the predictive uncertainty of future erosion at the site.

TABLE OF CONTENTS

Contents
List of Acronymsx
1. Introduction
2. Methods
3. Results
3.1. Task 2.2: Infiltration and Soil Moisture Determination
3.2. Task 2.5 Erodibility of Cohesive Sediment
3.3. Task 2.5 Erodibility of Clastic Material
4. Discussion
5. Conclusions41
6. References
7. Acknowledgements
Appendix 1. Maps and plots for all trench locations near the West Valley Demonstration Project45
Appendix 2. Summary of double ring infiltrometer tests and soil moisture measurements obtained at the following trench locations (numbered by trench): Heinz Terrace (HT), Upper Heinz Terrace (UHT), Tree Farm (FT), Abandoned Meander (MT), and Upper Abandoned Meander (UMT)52
Appendix 3. Summary of jet erosion tests obtained at the following trench locations (numbered by trench): Heinz Terrace (HT), Upper Heinz Terrace (UHT), Tree Farm (FT), Abandoned Meander (MT), and Upper Abandoned Meander (UMT). Tables and plots could include all of the collected data, designated as "raw," or with outliers removed, designate as "modified."
Appendix 4. Summary of grain size statistics obtained in stream channels near the WVDP. These are listed in the order in which they were collected (GS-1, GS-2, etc.), their GPS locations are provided, and the percentiles of the distribution are tabulated (D_{10} , D_{16} , D_{50} , D_{84} , D_{90} , and D_{95} ; D_{50} refers to the grain size D in which 50% of the sediment population is finer than this size.) 158

List of Figures

Figure 1. For volumetric water content measurements, (a) the Hydrosense soil moisture probe was used
(image from Campbell Scientific), and (b) several measurements were recorded for a given geological unit12
Figure 2. Double ring infiltrometer used in this study showing (a) its components (image from Humboldt),
and (b) its application. The manometers were not used
Figure 3. The JET apparatus showing (a) a drawing of the device (Hanson and Cook, 2004), (b) stand-pipe
mounted to a tripod, water pump, and local water source (drums), (c) a sealed JET cylinder placed onto a
geological material within a dug trench, vertical jet pipe, and point gauge, and (d) exposed scour hole (ponded
water) once the JET cylinder is removed upon completion of test
Figure 4. Selected streambed reach for Wolman pebble count method
Figure 5. Wolman pebble count method showing (a) pebble axes, where the b-axis is measured, and (b) a
typical survey (photo courtesy of T. Zerfas)
Figure 6. Time variation in information rate for FT-14. The steady-state infiltration rate is shown as a
dashed line
Figure 7. JET data for FT-6 (raw) showing (a) scour data and solution spreadsheet for τ_c and k_d calculated
using Blaisdell, Iterative, and Scour Depth Solutions and (b) plots of measured scour depth (cm) as a function
of time in comparison to the three solution methods
Figure 8. An example of quality control for the JET data for HT-29 showing (a) original data ("raw" data)
with five (5) data points displaying an increase in scour depth with time, and (b) the "modified" data with
these outliers removed. Curves are the three solutions for the erodibility indices
Figure 9. An example of quality control for the JET data for FT-2 showing (a) original data ("raw" data) with
three (3) initial data points displaying very high rates of erosion, and (b) the "modified" data with these initial
points removed. Curves are the three solutions for the erodibility indices
Figure 10. An example of quality control for the JET data for FT-15 showing that the collected data are
unusable
Figure 11. Locations of all Wolman pebble counts, where green dots correspond to GS-# of location30
Figure 12. Example data sheet, grain size distribution and plots, and derived grain size percentiles determined
for a Wolman pebble count conducted on Heinz Creek
Figure 13. Variation in infiltration rate with elevation for each terrace. Error bars are standard deviation for
infiltration rate and 5 ft uncertainty in elevation
Figure 14. Variation in infiltration rate with elevation using different aggregation methods. Error bars are
standard deviation for infiltration rate and applicable elevation range34
Figure 15. Variation in the critical tractive shear stress τ_c and the erodibility coefficient k_d with elevation for
each terrace. Error bars are errors for erodibility indices and 5 ft uncertainty in elevation36
Figure 16. Variation in the critical tractive shear stress τ_c and erodibility coefficient k_d with elevation using
different aggregation methods. Error bars are standard deviation for the erodibility indices and applicable
elevation range. Note that the spatial average value of τ_c is nearly identical to the average value by frequency.
Figure 17. Longitudinal variations in grain size percentiles for stream bed sediments along Heinz Creek,
Gooseneck Neck, and Buttermilk Creek
, =

List of Tables

Table 1: Double ring infiltrometer test for location FT-14. 19
Table 2: Summary of average (and standard deviation; StDev) soil moisture measurements and steady-state
infiltration rates for all trench locations.
Table 3: Summary of sediment erodibility indices (τ_c and k_d) derived for each solution method (Blaisdell,
Iterative, and Scour Depth) for those trenches with acceptable data. Elevation (±5 ft) of the trench surface is
also provided29
Table 4: Summary of grain size statistics for selected stream channel beds. Refer to Figure 12 for locations
and Appendix 4 for data
Table 5: Variation of infiltration rate aggregated and averaged by selected landscape elevation ranges35
Table 6: Variation of critical tractive shear stress τ_c and erodibility coefficient k_d aggregated and averaged by
selected landscape elevation ranges

List of Acronyms

APA Access Prohibited Area

ECS Enviro Compliance Solutions, Inc.

EWG Erosion Working Group

NYSERDA New York State Energy Research and Development Authority

WVDP West Valley Demonstration Project

WNYNSC Western New York Nuclear Service Center

1. Introduction

Enviro Compliance Solutions, Inc. (ECS) and the West Valley Erosion Working Group (EWG) recommended erosion studies to be performed as part of the Phase 1 Studies at the West Valley Demonstration Project (WVDP) and Western New York Nuclear Service Center (WNYNSC; WVDP Erosion Working Group, 2015). The primary goals of the Phase 1 Erosion Studies are to enable improved forecasts of future erosion at the WVDP and WNYNSC, to reduce the associated uncertainty of these forecasts, and to assist the agencies in reaching consensus on the likely effects of future erosion. These studies are divided into three activities: Study 1 - Terrain Analysis, Age Dating, and Paleoclimate, Study 2 - Recent Erosion and Deposition Processes, and Study 3 - Model Refinement, Validation, and Improved Erosion Projections.

The EWG identified a list of environmental parameters that would reduce uncertainties in prediction future erosion using a landscape evolution model (WVDP Erosion Working Group, 2015). These parameters include bed-sediment entrainment thresholds, soil/till-detachment thresholds, storm depths, durations, and frequency parameters, soil/till detachabilities, and soil-infiltration capacities. Several activities were proposed in Study 2 to quantify these erosion-related parameters and task implementation plans were prepared, approved, and implemented to accomplish these goals.

The objective of this report is to summarize the field activities conducted this past summer (2016), to review the methods employed, and to tabulate and interpret the preliminary data collected. The three tasks summarized here are the following:

- 1. Task 2.2: Infiltration and Soil Moisture Determination
- 2. Task 2.5: Erodibility of Cohesive Sediment
- 3. Task 2.6: Erodibility of Clastic Sediment in Selected Gullies, Stream Channels, and Streambanks

For Task 2.2, field activities sought to quantify infiltration capacity or rate and volumetric moisture content for selected surficial geological materials, and this would be accomplished using a double ring infiltrometer and a soil moisture probe. For Task 2.5, field activities sought to quantify the erodibility indices for selected surficial geological materials, and this would be accomplished using the jet erosion test (JET). For Task 2.6, field activities sought to quantify the surface grain size statistics of selected stream channels, and this would be accomplished using pebble counts.

The geological material of interest for Tasks 2.2 and 2.5 is glacial till, and in particular, the Lavery Till. Access to and exposure of this till within the WNYNSC is complicated by current land use and land cover, restricted access enforced by federal and state agencies, and private land ownership. As such, these tasks were combined with those activities of Study 1, which engaged local contractors to provide access to specific terraces within the landscape and to dig relatively large trenches to expose

the geological materials of interest. These trenching activities, coupled with support from ECS personnel to provide an ample water supply, greatly facilitated the success of Task 2 activities.

2. Methods

For Task 2.2, field activities sought to quantify infiltration capacity or rate and volumetric moisture content for selected surficial geological materials accomplished using a double ring infiltrometer and a soil moisture probe.

Volumetric moisture contents for selected exposed sediments were measured using a HydroSense probe inserted at various locations within the geologic material of interest (Figure 1). The probe can measure volumetric water content ranging from 0 to 50%, with a typical resolution <0.05% and an accuracy of 3%. The probe has a rod diameter of 5 mm and a rod length of 120 mm.

Five soil moisture content measurements were obtained in selected excavated trenches prior to infiltration testing and recorded on the double ring infiltrometer data sheet (Figure 3). Under wetter conditions, the trenches may fill with water and require pumping and drying overnight before soil moisture and infiltration testing could proceed. The measurements were averaged to obtain the average soil moisture content of the selected exposed sediment.

Figure 1. For volumetric water content measurements, (a) the Hydrosense soil moisture probe was used (image from Campbell Scientific), and (b) several measurements were recorded for a given geological unit.

Infiltration is the downward movement of water into soil, and the infiltration rate is the maximum rate at which a soil will absorb water impounded on the surface at a shallow depth (Johnson, 1963). Different methods and types of equipment have been used for measuring infiltration rate, but the principal method involves measuring water entry into the sediment from infiltrometer rings. Ring

infiltrometers consist of metal cylinders that are partially driven into the soil and filled with water. The water level within the rings is held constant, forcing water to penetrate the sediment in a downward fashion, and the rate at which the water moves into the sediment is measured over time.

The rate of infiltration is greatly affected by the permeability of the material of interest, and usually, the sediments are unsaturated when an infiltration test is started. When water is first introduced to the sediment surface, the infiltration rate is generally high. As water application continues and the uppermost sediments become saturated, the infiltration rate gradually decreases and reaches a nearly constant rate, typically within a few hours. This constant infiltration rate is considered the saturated infiltration rate or saturated vertical hydraulic conductivity of the sediment (Johnson, 1963).

To determine the saturated infiltration rate, a standard double ring infiltrometer (ASTM D-3385) consisting of two steel rings was used (Figure 2; Johnson, 1963). Both rings are 508 mm tall (20 in), where the outer ring measures 610 mm (24 in) in diameter and the inner ring measures 305 mm (12 in) in diameter (Figure 2). Maintaining the same water level in both rings creates a constant head that forces infiltration of water in the inner ring downward rather than laterally. The change in vertical water level was measured in the inner ring as a function of time.

For an infiltration test, the parent material of the geological surface must be exposed, and the trenches dug for Study 1 were ideal for this purpose. The area or ledge must be wide enough to drive the outer ring at least 0.1 m into the parent material without threat of collapse. The outer ring was first placed on the surface and 4×4 wooden block is placed on top of the ring. The outer ring was tamped into the sediment to the desired depth using a sledge hammer, and the ring was leveled. The inner ring was then centered inside the outer ring, tamped into the sediment to a similar depth, and leveled, ensuring that the sediment surface inside this ring was not disturbed. To prevent lateral water leakage from the rings, the outside of both rings was backfilled and packed with clayey sediment.

Once the double ring infiltrometer was in place, a millimeter ruler was attached to the inside of the inner ring. Both rings were then filled with water, typically to a depth of about 0.25 m and making sure the water level is the same within both rings. Care must be taken in the filling of the apparatus so not to disturb the surface sediment. A manometer may be utilized for maintaining a constant water level and for measuring the quantity of the water, but this was not used here (Figure 2).

When constant hydraulic head was established, the water level in the inner ring was measured to the nearest millimeter and the time was initiated. Additional water was kept at the test site to refill rings to maintain a nearly constant hydraulic head. In relatively coarser-grained and dryer sediments, initial infiltration rates could be quite large, which required refilling the rings often and recording the new starting height. For the first two hours, water level readings in the inner ring were taken every 5 to 15 minutes. After two hours, readings could be taken at 15- to 30-min intervals for up to six hours (or longer). Water level readings (cm) were recorded on the double ring infiltrometer data sheet at each time interval. To prevent evaporation between longer time intervals, the rings should be covered between water measurements. The infiltration rate over time should asymptotically

approach a constant value, signaling that infiltration has reached steady-state conditions; a saturated infiltration rate is attained.

(a) Figure 2. Double ring infiltrometer used in this study showing (a) its components (image from Humboldt), and (b) its application. The manometers were not used.

For Task 2.5, field activities sought to quantify the erodibility indices for selected surficial geological materials, accomplished using the jet erosion test (JET). The JET is used to estimate the erodibility of glacial materials by simulating erosion by a water over a fixed period of time (Hanson 1990a; Hanson 1990b). The JET forces water to penetrate the geologic material surface in a vertical fashion, forming a scour hole where material has been eroded away (Hanson, 1990a). The depth of the scour hole created by the jet stream is measured in the field at fixed time intervals and analytical methods are then employed to estimate the material's critical shear stress τ_{ϵ} and erodibility coefficient k_d based on the JET data.

The *in situ* JET apparatus developed by Hanson and Cook (2004) consists of a jet tube, nozzle, point gage, submergence tank, and adjustable head tank (Figure 3). The 0.92 m long jet tube is made of clear acrylic tubing (6.4 mm thick) to allow visual observation of air accumulation in the jet tube. An air relief valve is attached to the top of the jet tube to allow air to escape from the jet tube column during initial filling. The jet tube has an 89-mm diameter orifice plate 12.7 mm thick with a 6.4 mm diameter nozzle in the center of the plate. A 32 mm hose delivers water to the jet tube 0.41 upstream of the orifice plate. A point gage is attached to the top of the jet tube and aligned with the jet nozzle so that it can pass through the nozzle to the sediment surface to read the depth of the eroded scour hole. The diameter of the point gage is equivalent to the nozzle diameter so that when the point gage rod passes through the nozzle opening, the flow is shut off. A deflector plate is also

attached to the bottom of the jet tube to deflect the jet stream and protect the sediment surface from erosion during initial filling of the tank. The deflector plate is moved out of the way during testing to allow the jet stream to impinge upon the sediment surface (Hanson and Cook, 2004).

Figure 3. The JET apparatus showing (a) a drawing of the device (Hanson and Cook, 2004), (b) stand-pipe mounted to a tripod, water pump, and local water source (drums), (c) a sealed JET cylinder placed onto a geological material within a dug trench, vertical jet pipe, and point gauge, and (d) exposed scour hole (ponded water) once the JET cylinder is removed upon completion of test.

The adjustable 0.91 m tall head tank is made of 50 mm clear acrylic tubing to allow visual observation of the water level inside of the head tank. The head tank sits on top of a tripod to allow the height of the head to be adjusted up and down in order to maintain constant head. The jet submergence tank is made of 16-gauge steel 0.30 m in diameter and is 0.30 m in height. The tank is

open on both ends and has a 25-mm² tube frame attached that holds the jet tube in the center of the tank. The tank also has a discharge tube attached to the wall to allow excess water to be discharged during testing. A steel ring plate is attached to the outside perimeter of the tank 25 mm from the bottom and is driven 50 mm into the sediment until it makes contact with the sediment surface to seal the bottom to allow the tank to be filled with water, submerging the jet orifice (Hanson and Cook, 2004). A tube that is attached to the side head tank is filled with water by a connection to a gas-powered water pump and excess water is discharged back into the supply barrels by an overflow tube to maintain constant head. An additional tube runs from the bottom of the head tank to the side of the submergence tank to deliver water into the submergence tank. During testing, two 55 gal barrels of water are utilized in absence of a running water supply and are sufficient to supply water for a 2-hour test.

The following procedure, modified from Hanson and Cook (2004), was employed to assess the erodibility of the exposed glacial sediments surrounding the WNYNSC. All JET deployments were conducted within trenches dug by a backhoe to expose the glacial sediment of interest and to facilitate the use of the JET device. These trenches were 5 to 10 m long, 5 to 10 m wide, and as much as 5 m deep.

- 1. Select a site and determine the layout of the apparatus, hoses, and pump. The site should display homogeneous material of interest on a flat surface (bench). Water barrels should be set up close to the pump and JET apparatus, but away from the edge of the trench to avoid collapse of the trench wall. Two 55 gal barrels are filled with water, which is enough for a 2-hour test.
- 2. Drive the submergence tank ring into the soil surface by placing a 2×4 wood block over the ring and by hitting it gently with a hammer. The tank is driven into the sediment until the bottom of the steel plate is flush with the sediment surface.
- 3. When the tank is tamped into the sediment surface, the jet tube and point gage are attached to the frame on the submergence tank. The initial height of the jet nozzle should be set between 6 and 35 nozzle diameters relative to the ground surface.
- 4. The jet head tank is placed on top of the tripod and raised to the desired height. The height of the head tank is then measured. The total head height is calculated by measuring from the bottom of the submergence tank to the bottom of the head tank and adding this value to the height of the pre-measured head tank. An approximate head setting should be determined prior to testing based on an estimate of the maximum stress that the sediment would experience under conditions of interest. This head measurement is recorded on the JET data sheet.
- 5. Place the water pump on a level surface at the height of the jet tripod apparatus. The pump should be placed close enough to the JET apparatus so that the hoses can reach their appropriate connections but far enough away from the trench ledge to avoid collapse of the trench wall.
- 6. Connect hoses from the water barrel to the pump, the water pump to the head tank, the head tank to the jet tube, and the submergence tank to a discharge area. A valve on the hose

- from the pump to the head tank is used to control flow and pressure into the head tank and should be adjusted prior to turning on the pump to avoid initial overflow. The fully assembled JET apparatus is now setup.
- 7. The initial height of the jet nozzle orifice is measured by lowering the point gage to the sediment surface at time zero. This nozzle height measurement is recorded on the JET data sheet. The point gage is then pulled out of the nozzle to a distance of at least 10 nozzle diameters to prevent flow disturbance from the point gage.
- 8. The deflector plate is placed beneath the jet nozzle to close off the nozzle during initial filling. The pump is turned on and allowed to run until the head tank is full and until constant head is maintained. The air valve is opened to bleed air in the nozzle out of the system.
- 9. Once the head tank and submergence tank are filled, the pump deflector plate is moved out of the way to begin the test. The pump delivers a jet stream to the sediment surface for predetermined time intervals, typically between 5 and 10 minutes. Scour depth readings are taken by lowering the point gage to the scour hole surface. Feeling the tip of the point gage above the sediment surface is often necessary to avoid penetration into the soil. Small pebbles may need to be removed if they are suspended by the jet stream to prevent disturbance of the jet stream. A set of 10 to 12 scour depth readings is recommended for each test.

To complete Task 2.6, field activities sought to quantify the surface grain size statistics of selected stream channels near the WVDP. The Wolman pebble count method provides a simple technique for determining the grain size statistics for the surface sediments of coarse-bedded streams (gravel and larger; Wolman, 1954; Figure 4). The location of the streambed selected for a pebble count was first determined using a GPS and recorded. The pebble count was then started on one side of a selected stream bed near one bank. The pebble counter walked heel to toe in a zig-zag fashion from one end of the stream bank to the other (Figure 5). For every step taken, the counter picked up the pebble directly beneath his/her big toe. If the pebble selected was embedded, it was measured in situ. The b-axis (intermediate) of the particle was measured in millimeters and recorded on the pebble count data sheet (Figure 5). In practice, the actual size of the pebble was not recorded; its bin size was recorded. The following bins were employed: <2 mm, 2 to 4 mm, 5 to 8 mm, 9 to 16 mm, 17 to 32 mm, 33 to 64 mm, 65 to 90 mm, 91 to 128 mm, 129 to 180 mm, 181 to 255 mm, and >256 mm. These bin sizes correspond to sand (less than 2 mm), gravel (2 to 63 mm), cobble (64 to 255 mm), and boulder (256 to 512 mm).

After the pebble size was noted, the counter discarded it, took another step, and repeated this process until 100 pebbles or more have been counted. It is important to select pebbles as randomly as possible to minimize any bias in the particles measured, and areas disturbed by human activities should be avoided. Any non-native materials, such as rip-rap, were discounted in the study. From the distribution of pebble sizes, the following grain size percentiles (% finer than) can be obtained: D_{10} , D_{16} , D_{50} , D_{84} , D_{90} , and D_{95} . Here, D_{50} refers to the grain size D in which 50% of the sediment population is finer than this size.

Figure 4. Selected streambed reach for Wolman pebble count method.

(a) Figure 5. Wolman pebble count method showing (a) pebble axes, where the b-axis is measured, and (b) a typical survey (photo courtesy of T. Zerfas).

3. Results

Measurements for infiltration, soil moisture, and the JET were conducted in conjunction with the trenching of Study 1, which focused on three locations within the WNYNSC: Heinz Creek Terraces, the Tree Farm Terraces, and the Abandoned Meander Terraces (see Appendix 1 for location maps). The trenches provided unrivalled opportunities to conduct these measurements directly on the glacial materials of interest. Data for the infiltration, soil moisture, and JET studies are labeled by the trench name and number (also provided in the Appendix 1) as follows: HT – Heinz Creek

Terrace; UHT – Upper Heinz Creek Terrace; FT – Tree Farm terrace; and MT – Abandoned Meander terrace. The Wolman pebble counts were conducted in streams outside the Access Prohibited Areas and where easy access and land-owner permission were provided.

3.1. Task 2.2: Infiltration and Soil Moisture Determination

Table 1 shows an example infiltration test performed at the Tree Farm Terrace at trench FT-14 (refer to the Appendix 1 for the trench location). The initial water level at the start of the test was 0.21 m. Readings were taken every 15 minutes for the first two hours of the test, every half an hour for the next four hours, and then it was left covered overnight and a final measurement was obtained the next day. All measurements were converted to infiltration rate in units of mm/hr and m³/yr.

Table 1: Double ring infiltrometer test for location FT-14.

Double Ring Infiltrometer	Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moist	ure (%)	StDev		
				20.0	3.64		
Project Identification:	West Valley Demonstration Project	22					
Test Location:	FT-14	19.2					
Soil Type:		23.5			,		
Tested By:	CI, JZ	14.1			Ring area (mm²)	72966	
Date:	7/20/2016	21.2			Ring area (m ²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	21		,	,	, ,	` ','	
15	20.2		0.8	8	32.00	20.45	
30	19.8		0.4	4	16.00	10.23	
45	19.5		0.3	3	12.00	7.67	
60	19.1		0.4	4	16.00	10.23	
75	18.9		0.2	2	8.00	5.11	
90	18.7		0.2	2	8.00	5.11	
105	18.5		0.2	2	8.00	5.11	
120	18.2		0.3	3	12.00	7.67	
150	17.9		0.3	3	6.00	3.84	
180	17.7		0.2	2	4.00	2.56	
210	17.4		0.3	3	6.00	3.84	
240	17.1		0.3	3	6.00	3.84	
270	16.9		0.2	2	4.00	2.56	
300	16.7		0.2	2	4.00	2.56	
330	16.4		0.3	3	6.00	3.84	
360	16.1		0.3	3	6.00	3.84	
1080	9.7		6.4	64	5.33	3.41	
							STDev
				Average Infiltration F	Rate (mm/hr)	5.25	1.04
				Average Infiltration F		3.36	0.66
					Time (min)		
					0	5.25	
					360	5.25	

The time variation of infiltration rate for FT-14 is shown in Figure 6. An asymptotic infiltration rate was achieved after approximately 150 min of initiating the test. The steady-state saturation infiltration rate of 5.4 ± 1.0 mm/hr (or 3.4 ± 0.7 m³/yr), using these asymptotic values, is represented by a dashed line. At this same location, several volumetric moisture contents were also taken (Table 1). Based on these values, the volumetric moisture content of the sediment within FT-14 at the time of the infiltration test was $20.0\pm3.6\%$.

Figure 6. Time variation in information rate for FT-14. The steady-state infiltration rate is shown as a dashed line.

Determinations of volumetric moisture content and infiltration rate were completed for 37 trenches at the three locations (see Appendices 1 and 2). All processed data are summarized in Table 2, and some general observations can be made. Volumetric moisture content is inversely proportional to infiltration rate. For volumetric moisture content, the mean (± standard deviation) values are $18.2\pm1.70\%$ for the Heinz Creek Terraces, $27.2\pm1.73\%$ for the Tree Farm Terraces, and $31.1\pm3.0\%$ for the Abandoned Meander Terraces. For infiltration rate, the mean (± standard deviation) values are 84.8 ± 13.9 mm/hr for the Heinz Creek Terraces, $6.6\pm1.3\%$ for the Tree Farm Terraces, and $5.1\pm1.0\%$ for the Abandoned Meander Terraces. These average values are for each location, regardless of geological material and elevation.

Table 2: Summary of average (and standard deviation; StDev) soil moisture measurements and steady-state infiltration rates for all trench locations.

Trench	Elevation	Date	Soil	Moisture		Steady-State Ir	nfiltration Rate		
	(ft)		(%)	StDev (%)	(mm/hr)	StDev (mm/hr)	(m³/yr)	StDev (m³/yr)	
					inz Creek Terra				
HT-3	1231	6/20/2016	NA	NA	23.0	5.9	14.70	3.77	
HT-5	1230	6/21/2016	40.7	4.5	3.6	3.3	2.30	2.10	
HT-7	1229	6/15/2016	41.2	1.6	28.0	23.5	17.90	15.02	
HT-8	1241	6/21/2016	10.9	1.0	240.0	17.0	153.40	10.85	
HT-11	1252	6/22/2016	26.5	3.3	12.0	5.4	7.67	3.43	
HT-15	1260	6/27/2016	30.6	1.4	1.5	2.1	0.96	1.32	
HT-16	1260	6/22/2016	36.9	2.7	0.5	2.5	0.32	1.57	
HT-20	1271	6/28/2016	26.4	3.0	28.0	3.1	17.90	1.98	
HT-23	1266	6/27/2016	18.2	3.3	96.0	6.0	61.36	3.84	
HT-24	1222	6/29/2016	18.6	5.1	42.0	6.6	26.85	4.20	
HT-25A	1235	6/29/2016	5.5	1.3	141.4	15.0	90.40	9.62	
HT-25B	1225	6/30/2016	9.6	2.6	38.0	8.5	24.29	5.42	
HT-26	1228	6/29/2016	13.1	6.5	136.7	13.7	87.35	8.74	
HT-29	1239	6/28/2016	17.1	4.5	16.8	3.4	10.74	2.14	
HT-32	1236	6/30/2016	3.0	0.4	852.7	59.6	545.01	38.08	
HT-34	1257	7/5/2016	11.5	2.1	3.4	2.5	2.19	1.60	
HT-35	1258	7/5/2016	16.1	1.7	3.2	3.4	2.05	2.14	
UHT-3	1389	7/7/2016	2.2	0.5	203.3	20.2	129.97	12.95	
UHT-4	1389	7/7/2016	10.3	2.4	42.0	4.0	26.85	2.56	
UHT-5	1402	7/11/2016	8.4	2.5	0.5	0.9	0.32	0.59	
UHT-8	1392	7/11/2016	19.1	5.7	NA	NA	NA	NA	
UHT-9	1402	7/6/2016	13.0	4.0	1.0	1.9	0.64	1.18	
UHT-11	1398	7/6/2016	21.4	4.9	1.3	2.1	0.85	1.32	
				Ti	ee Farm Terrac	re			
FT-2	1193	7/14/2016	23.9	1.8	1.0	1.8	0.64	1.16	
FT-6	1191	7/14/2016	27.7	4.8	0.7	1.6	0.43	1.00	
FT-12	1175	7/18/2016	16.4	3.1	2.8	1.8	1.79	1.14	
FT-13	1177	7/27/2016	24.8	2.3	1.6	2.8	0.99	1.78	
FT-14	1165	7/20/2016	20.0	3.6	5.3	1.0	3.36	0.66	
FT-20	1152	7/26/2016	47.8	2.3	42.4	5.0	27.10	3.18	
FT-22	1153	7/26/2016	26.2	2.4	0.6	1.0	0.38	0.62	
FT-23	1151	7/21/2016	10.8	3.1	9.2	1.1	5.88	0.70	
FT-24	1158	7/19/2016	33.4	6.0	2.4	0.6	1.56	0.56	
FT-26	1201	7/27/2016	41.1	6.9	0.4	1.1	0.24	0.70	
					oned Meander T	l Terrace			
MT-31	1290	8/9/2016	33.5	3.7	0.9	1.5	0.57	0.93	
MT-36	1293	8/8/2016	31.1	8.5	1.0	1.7	0.64	1.09	
MT-37	1293	8/8/2016	45.2	3.4	0.9	1.5	0.55	0.97	
UMT-1	NA NA	8/11/2016	14.7	1.3	17.5	3.5	11.20	2.25	
J.1.1 1	2.123	0,11,2010	* 1.7	1	1,.5	J.5	11.20	2.23	

3.2. Task 2.5 Erodibility of Cohesive Sediment

Quantifying the erodibility of cohesive sediments is challenging in that many factors can affect erodibility, including soil texture, unit weight, water content, swelling potential, clay mineralogy, and pore water chemistry (Al-Madhhachi et. al 2013b). In general, the erosion rate of cohesive sediments may be approximated from JET data using the linear excess shear stress model that expresses the erosion rate ε_r (m/s; Hanson 1990a, 1990b) as follws:

$$\varepsilon_r = k_d (\tau - \tau_c)^a \tag{1}$$

where τ is the average boundary shear stress (Pa), τ_c is the critical shear stress (Pa), k_d is the erodibility coefficient (cm³/N-s), and a is an empirical exponent commonly assumed to be unity (Hanson, 1990a, 1990b; Hanson and Cook, 2004). Three solution methods have been developed to determine critical shear stress τ_c and the erodibility coefficient k_d of cohesive sediments using the JET, and these are described below.

Analytical methods for the JET were first presented by Hanson and Cook (2004) based on diffusion principles developed by Stein and Nett (1997). The method, termed the Blaisdell Solution (Blaisdell et al., 1981), assumes that the rate of variation in scour depth dJ/dt, where J is the scour depth (cm) and t is time (s), is erosion rate as a function of the applied shear stress τ . The maximum scour depth was assumed to occur when the rate of scour was equal to zero at the equilibrium depth, which can be determined by the diameter of the jet nozzle d_o (cm) and the distance from jet origin to the initial channel bed J. The erosion rate equation for jet scour is defined as (Hanson and Cook, 2004):

$$\frac{dJ}{dt} = k_d \left[\frac{\tau J_p^2}{J^2} - \tau_c \right] \text{ for } J \ge J_p \tag{2}$$

where J_p is the potential core length from the jet origin (cm). The value of the critical shear stress for the sediment τ_c was assumed to occur when the rate of scour was equal to zero at the equilibrium scour depth J_e , which is defined as:

$$\tau_c = \tau \left(\frac{J_p}{J_e}\right)^2 \tag{3}$$

where $\tau = C_f \rho U_o^2$ is the shear stress due to the jet velocity at the nozzle (Pa), C_f is the coefficient of friction, assumed to be 0.00416, ρ is the density of water (kg/m³), U_o is the jet velocity at the orifice (cm/s), and $J_p = C_d d_o$ and C_d is the diffusion constant assumed to be 6.3. It is important to note that the equilibrium scour depth J_e is seldom reached in a typical JET application.

Equations 1 and 2 above can be incorporated into the dimensionless equation:

$$\frac{dJ^*}{dT^*} = \frac{(1-J^{*2})}{J^{*2}} \tag{4}$$

where $J^* = J/J_e$ and $J_p^* = J_p/J_e$. Stein and Nett (1997) expressed the reference time T_r as:

$$T_r = \frac{J_e}{k_d \tau_c} \tag{5}$$

and the dimensional time T^* as:

$$T^* = t/T_r \tag{6}$$

where *t* is the time when scour depth is measured.

Equation 4 presents the change in scour depth with time for time T^* , and when integrated, yields the following equation (Hanson and Cook, 2004):

$$T^* - T_p^* = -J^* + 0.5 \ln \left[\frac{1 + J^*}{1 - J^*} \right] + J_p^* - 0.5 \ln \left[\frac{1 + J_p^*}{1 - J_p^*} \right]$$
 (7)

Hanson and Cook (2004) created an Excel spreadsheet using equations 2 through 7 to determine τ_c and k_d from the JET measurements. Equation 3 was used to determine the critical shear stress τ_c based on the equilibrium scour depth J_e . Blaisdell et al. (1981) developed a hyperbolic function for predicting the equilibrium scour depth, which was used in the spreadsheet developed by Hanson and Cook (2004) to calculate τ_c . The general form for the equation is as follows (Blaisdell et al., 1981):

$$(f - f_0)^2 - x^2 = A_1^2 (8)$$

where A_1 is the value for the semi-transfer and semi-conjugate of the hyperbola, $f = \log(J/d_0) - x$, $x = \log[(U_o t)/d_o]$, and $f_o = \log(J_e/d_0)$. By plotting f versus x and by fitting the scour depth data, the coefficients A_1 and f_o can be determined using Microsoft Excel Solver. The value of J_e can be found from $J_e = d_o 10^{f_o}$. By fitting the curve of measured data based on equation 7, k_d can be determined based on the measured scour depth, time, previously determined τ_c , and the dimensionless time function (Hanson and Cook, 2004). In many cases, the Blaisdell Solution does not always converge to a reasonable solution and often under-predicts erosion rates (Simon et al., 2010; Daly et al., 2013). The Blaisdell Solution, however, continues to be the preferred method for analyzing JET data at present (Daly et al., 2013).

A second solution of the excess shear stress equation was first proposed by Hanson and Cook (2004). The alternative solution, referred to as "Method 1," involved iteratively determining τ_c and k_d using the shear stress equation and a nonlinear curve fitting routine. The method was initially found to be unstable due to the allowance of multiple solutions depending on the initial iteration values, but this method was later revised. The Iterative Solution proposed by Simon et al. (2010) is based on "Method 1" described by Hanson and Cook (2004) with a modification to improve the robustness of the solution. The Iterative Solution method relies on the values of τ_c and k_d

estimated using the Blaisdell Solution as initial guesses. An upper bound for τ_c as a function of pressure at the jet nozzle, the nozzle diameter, and the maximum scour depth is first computed to prevent the equilibrium scour depth from being mathematically exceeded. The Microsoft Excel Solver is then used to simultaneously solve for a solution of k_d and τ_c that minimizes the root-mean-square error between the measured and predicted time (Simon et al., 2010). Simon et al. (2010) found that the Iterative Solution method provided a reduction in the scatter of the τ_c - k_d relationship, but the method also often led to an over-prediction of erosion during simulations.

Daly et al. (2013) proposed a third solution technique, which iteratively solves for k_d and τ_c that fit the observed scour depth data and that minimizes the sum of squared errors between the measured scour data and the solution of the excess shear stress equation. The method plots the original scour depth versus time data from the JET data and estimates the erodibility parameters k_d and τ_c based on the Blaisdell method as outlined by Hanson and Cook (2004). The erodibility parameters are then derived by fitting k_d and τ_c to the observed scour depths and by minimizing the sum of square error between the measured scour data and the solution of the excess shear stress equation using the generalized reduced gradient method in Microsoft Excel (Daly et al., 2013). The procedure described by Daly et al. (2013) mimics the approach for a mechanistic detachment model used by Al-Madhhachi et al. (2013a, b). This method is called the Scour Depth Solution.

To simultaneously derive values of k_d and τ_c using the three discussed methodologies, a spreadsheet routine was developed by S. Mohammad Ghaneeizad (pers. comm.), which is based on the routines developed by Hanson and Cook (2004). This updated routine includes the Blaisdell Solution, Iterative Solution, and Scour Depth Solution. The data input sheet is shown in Figure 7, which includes the time between readings (min), point gage readings (ft), head setting (in), point gage measurement at the nozzle (ft), and nozzle diameter (in). Initial parameter estimates for k_d and τ_c are also required to aid in solution convergence, but if the user does not have an initial estimate, the suggested values of k_d as a function of τ_c or a value of 1 may be entered for both parameters (Hanson and Simon, 2001; Simon et al., 2010). Once the solver is executed, this same sheet would display the values of τ_c and k_d for each solution method. The plot of scour depth as a function of time also is created, and the erosion curves for each solution methods are computed and included for graphical purposes (Figure 7). In addition, the residual sum of the squares is also computed for here solution, which is the sum of the deviations predicted from actual scour depth as compared to the observed values.

Data quality control was performed to address three issues. All JET data were processed and solutions for τ_c and k_d were derived. Data quality control was then preformed on the basis of visual observation of the solution curve fits to the measured scour depths. Some scour depth data displayed a decrease in scour depth between successive measurements, due to the deposition of pebbles or rocks beneath the point gage or by deposition of loose material into the scour hole following collapse of the scour wall (Figure 8). These scour depth outliers were removed from the

data set, because scour depth must increase or remain constant with time to satisfy the assumptions of impinging jet theory. The JET spreadsheet routine was then re-run for the modified datasets.

LOCATION	FT-6r	SCOUR DEPTH READINGS				
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	120.625	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.316	0	0	2.519	0.000	
		5	5	2.513	0.006	
		15	10	2.493	0.026	
		25	10	2.480	0.039	
		35	10	2.469	0.050	
		45	10	2.456	0.063	
		55	10	2.453	0.066	
			SOLU	TIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	8.67	44.02	41.89	
a)		k _d (cm³/N⋅s)	0.102	0.221	0.204	

(b) Figure 7. JET data for FT-6 (raw) showing (a) scour data and solution spreadsheet for τ_c and k_d calculated using Blaisdell, Iterative, and Scour Depth Solutions and (b) plots of measured scour depth (cm) as a function of time in comparison to the three solution methods.

LOCATION	HT-29 r			TH READIN		LOCATION	HT-29 m			TH READIN	
DATE	6/28/2016	TIME	DIFF	PT GAGE	MAXIMUM	DATE	6/28/2016	TIME	DIFF	PT GAGE	
HEAD (IN)	103.25	(MIN)	TIME	READING	DEPTH OF	HEAD (IN)	103.25	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)	PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT
NOZZLE H (FT)	0.195	0	0	2.479	0.000	NOZZLE H (FT)	0.195	0	0	2.479	0.000
		5	5	2.365	0.114			5	5	2.365	0.114
		10	5	2.356	0.123			10	5	2.356	0.123
		15	5	2.355	0.124			20	10	2.317	0.162
		20	5	2.317	0.162			30	10	2.294	0.185
		25	5	2.355	0.124			40	10	2.284	0.195
		30	5	2.294	0.185			45	5	2.28	0.199
		35	5	2.308	0.171						
		40	5	2.284	0.195					JTIONS	
		45	5	2.28	0.199				Blaisdell	Iterative	Scour Dept
		50	5	2.341	0.138			τ _c (Pa)	1.57	47.20	49.17
		55	5	2.291	0.188			k _d (cm ³ /N·s)	0.327	1.051	1.057
0	10 20	k _d (cm³/N⋅s) Time (min) 30 40	0.282	0.338	0.858	0	10	Time (min) 20 30	40	50	
2 Scour Depth (cm) 3 3 4 5 5 6					Observations Blaisdell Iterative Scour Depth	1 2 2 3 3 4 5 5 6					Observati Blaisdell Iterative Scour Deg

Figure 8. An example of quality control for the JET data for HT-29 showing (a) original data ("raw" data) with five (5) data points displaying an increase in scour depth with time, and (b) the "modified" data with these outliers removed. Curves are the three solutions for the erodibility indices.

Second, some JET datasets displayed very rapid rates of erosion during the initial stages of the experiment (Figure 9). This mass erosion may be explained by entrainment of looser sandy or gravely material by the JET stream prior to the jet stream reaching the geological material of interest. These scour depth outliers were removed, and the JET spreadsheet routine was then re-run for modified datasets.

Third, there were instances where no reasonable solution was found using the three scour depth solution methods. These unusable data included tests with multiple scour wall collapse events, tests displaying insignificant erosion over the duration of the testing period, and/or tests in which the measured nozzle height of the JET apparatus was in violation of impinging jet theory (nozzle height H should be greater than $8.3d_0$). An example of such a test is shown in Figure 10.

Figure 9. An example of quality control for the JET data for FT-2 showing (a) original data ("raw" data) with three (3) initial data points displaying very high rates of erosion, and (b) the "modified" data with these initial points removed. Curves are the three solutions for the erodibility indices.

Figure 10. An example of quality control for the JET data for FT-15 showing that the collected data are unusable.

A sensitivity analysis was performed to determine the effects of measurement error for total head and scour depth during testing. This was accomplished by using five of the best JET datasets with the Scour Depth Method, and allowing the head measurement to vary by ± 50 mm and allowing the point gage measurement to vary by ± 6 mm. The average error in determining τ_c was 6% and the average error in determining k_d was 10%. These errors are considered much smaller that the error in locating the trench in space.

Table 3 summarizes all processed data and the derived erodibility indices using the three solution methods with quality control employed. In general, the erodibility indices determined using the Iterative and Scour Depth Solutions are similar in magnitude, whereas the Blaisdell Solution predicts

lower values for τ_c and k_d . On the basis of simple visual inspection of the observed erosion rates and derived curves (see Appendix 3), the Scour Depth Solution appears to provide a consistently better fit to the observed scour hole data. Statistical analysis of sum of square error between the observed scour depths and solution curves also supports this observation. The average sum of the square error for the Blaisdell Solution is 9.4%, whereas this error is 22.6% for the Iterative Method Solution, and 0.4% for the Scour Depth Solution.

Table 3: Summary of sediment erodibility indices (τ_c and k_d) derived for each solution method (Blaisdell, Iterative, and Scour Depth) for those trenches with acceptable data. Elevation (± 5 ft) of the trench surface is also provided.

Location	Elevation (ft)		τ _c (Pa)			k _d (cm ³ /N-s)	
		Blaisdell	Iterative	Scour Depth	Blaisdell	Iterative	Scour Depth
	LL		Heinz Cre	ek Terrace		I.	L
HT-3	1231	6.93	31.54	37.54	0.69	1.56	2.45
HT-5	1230	3.31	19.95	22.28	0.47	1.14	1.44
HT-8	1241	0.25	11.85	11.59	3.81	8.68	7.93
HT- 11	1252	7.97	89.71	90.16	0.08	0.46	0.42
HT-15	1260	21.51	43.69	43.92	0.20	1.33	1.65
HT-20	1271	4.07	19.88	20.11	1.14	4.68	6.18
HT-23	1266	2.35	17.4	18.96	1.14	3.20	5.06
HT-25A	1235	3.11	27.01	25.13	1.16	5.28	2.33
HT-25B	1225	9.35	33.92	35.63	0.65	1.70	2.40
HT-26	1228	13.01	54.95	56.16	0.32	1.19	1.48
HT-29	1239	1.57	47.2	49.17	0.33	1.05	1.06
HT-32	1236	7.46	47.05	51.98	0.82	2.42	3.3
HT- 34	1257	40.37	38.99	38.99	1.00	8.48	3.87
HT-35	1258	0.54	32.14	31.87	0.63	1.86	1.58
UHT-3	1359	12.71	36.02	35.53	1.11	10.94	5.4
UHT-4	1389	6.64	32.23	32.15	0.43	3.77	2.95
UHT-5	1402	0.87	40.56	36.29	0.25	1.12	0.71
UHT-8	1392	46.34	38.3	44.44	1.00	0.55	2.30
UHT-9	1402	37.91	64.8	66.32	0.07	0.4	0.57
UHT-11	1398	36.46	41.52	41.84	0.17	0.87	1.82
			Tree Farr	n Terrace			•
FT- 2	1193	41.20	56.49	57.28	0.09	0.47	0.62
FT- 6	1191	8.67	44.02	41.89	0.10	0.22	0.20
FT-9	1176	0.98	14.44	34.04	0.28	0.36	0.66
FT-12	1175	28.41	45.84	43.98	0.06	0.22	0.16
FT- 13	1177	15.54	53.68	53.76	0.38	1.67	1.74
FT-14	1165	3.55	32.58	33.07	0.12	0.48	0.50
FT-16	1156	1.81	31.21	31.35	0.65	2.07	1.8
FT-20	1152	11.44	42.4	42.62	0.37	1.27	1.83
FT-22	1153	32.96	69.31	70.15	0.22	1.19	1.46
FT-23	1151	9.31	42.77	42.79	0.32	2.42	2.17
FT-24	1158	0.21	12.47	16.43	1.35	2.39	2.85
FT-25	1159	1.98	38.29	39.95	0.38	1.23	1.43
FT-26	1201	42.47	74.95	76.88	0.03	0.12	0.15
			Abandoned M	eander Terrace			
MT-31	1290	7.55	38.96	39.28	0.22	0.94	1.40
MT-36	1293	13.63	50.70	52.22	0.11	0.41	0.60
MT-37	1293	12.72	41.18	43.08	0.16	0.48	0.69
UMT-1	NA	7.93	34.99	35.11	0.50	2.88	2.8

3.3. Task 2.5 Erodibility of Clastic Material

A total of 49 pebble counts were conducted in and near the WNYNSC along major and minor creeks as well as two locations on Cattaraugus Creek. Figure 11 displays the locations of the Wolman pebble counts conducted, Appendix 4 summarizes all data, and Figure 12 displays an example distribution and calculation.

Figure 11. Locations of all Wolman pebble counts, where green dots correspond to GS-# of location.

For this location along Heinz Creek, 128 pebbles were measured and sorted into grain size bins. Grain sizes range from 5 to 8 mm (fine gravel) up to greater than 256 but less than 512 mm (boulder). The median grain size of this sediment population D_{50} is 44 mm, or a very coarse gravel.

Site	e Name:	Heinz Creek				
	cation:	42°27'06.2"N 78	3°38'30.9"W			
Dat	te:	6/23/2016				
		Particle S	ize (mm)	Total #	%in Range	% Finer
	Sand and Silt	< 2		0	0%	0%
		2 - 4		0	0%	0%
		5 - 8		3	2%	2%
	Gravels	9 - 10	6	7	5%	8%
		17 - 32	2	42	33%	41%
		33 - 64	4	32	25%	66%
		65 - 90		15	12%	77%
	Cobbles	91 - 1:		18	14%	91%
		129 - 18		7	5%	97%
		181 - 2		3	2%	99%
	Boulders	256 - 5		1	1%	100%
			TOTALS:	128		
		Size Distribut	tion		Histogram	
	100%		₹ П¶ШШ	35% I		
	90%					
				30% ‡		
	80%	 	 	1 - 1		
	70%	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25% +		
		 				
_	60%	 	 	B 20% 1		
% Finer	50%	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% 15% 15%		
%		<u> </u> /		<u>.</u>		
	40%	 	 	% _{12%} ‡		
	30%	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l <u>‡</u>		
		/		10% ‡		
	20%	 	 	1 - 1		
	10%	<u> </u>		5% +		
	0%	10 100	1000	0% 1 1 1 2 4	8 16 32 64 90 1	28 180 255 512
		Particle Size [mm]		-	Sediment Size [m	
		. S. t. S. c Jine [mm]			Jeannent Jize [II	1
		D ₁₀	17.1	mm		
		D ₁₆	20.0	mm		
		D ₅₀	44.0	mm		
		D ₈₄	108.0	mm		
		D ₉₀	124.2	mm	1	
		D ₉₅			1	
		hoot avain sixo a	162.2	mm	J	

Figure 12. Example data sheet, grain size distribution and plots, and derived grain size percentiles determined for a Wolman pebble count conducted on Heinz Creek.

In general, the stream locations in the WNYNSC region investigated herein have predominantly very coarse gravel beds (Table 4). The ensemble average (and standard deviations) for the grain size percentiles for all streams visited are as follows: $D_{10} = 12 \pm 5$ mm, $D_{16} = 17 \pm 6$ mm, $D_{50} = 53 \pm 18$ mm, $D_{84} = 133 \pm 47$ mm, $D_{90} = 170 \pm 62$ mm, and $D_{95} = 250 \pm 95$ mm.

Table 4: Summary of grain size statistics for selected stream channel beds. Refer to Figure 12 for locations and Appendix 4 for data.

GS-#	Site Name	Coordinate		Gra	in Size Pe	rcentile (1	nm)	
			\mathbf{D}_{10}	D_{16}	\mathbf{D}_{50}	\mathbf{D}_{84}	D_{90}	D_{95}
GS-1	Rock Springs Rd., near WVDP	42°26'18.0"N 78°39'04.9"W	7.5	10.4	30.4	108.2	143.6	179.1
GS-2	Rock Springs Rd., near WVDP	42°26'17.5"N 78°39'08.3"W	20.4	25.8	58.9	154.8	210.0	295.4
GS-3	On 240, near Thomas Corners Rd	42°28'32.4"N 78°38'14.3"W	14.7	20.2	54.2	157.5	180.0	240.9
GS-4	On 240, just north of bend, west side	42°27'54.5"N 78°38'10.9"W	12.0	15.9	47.5	116.9	154.0	217.5
GS-5	On 240, upstream of road culvert	42°27'27.2"N 78°37'27.3"W	10.4	13.2	44.0	125.0	159.7	210.8
GS-6	On 240 further downstream, ~1 mi	42°27'25.7"N 78°37'28.1"W	9.6	11.9	35.0	89.0	109.9	127.7
GS-7	GS-7, Gooseneck Creek	42°26'30.2"N 78°36'53.3"W	17.5	21.7	54.7	158.4	205.7	299.1
GS-8	Thornwood Rd.	42°25'47.2"N 78°38'04.3"W	16.9	21.1	50.8	119.9	147.5	174.6
GS-9	240 at Firehouse, West Valley	42°23'48.0"N 78°36'39.6"W	14.9	19.0	47.5	170.8	246.4	374.2
GS-10	Upper Heinz Creek	42°27'15.1"N 78°37'43.2"W	14.3	20.6	56.3	155.5	185.6	315.6
GS-11	Near gas pipeline	42°27'15.1"N 78°37'43.1"W	6.1	9.8	27.3	67.8	102.4	173.9
GS-12	Near gas pipeline	42°27'16.4"N 78°37'42.1"W	8.8	12.6	35.0	109.2	166.5	252.2
GS-13	Near gas pipeline	42°27'15.7"N 78°37'41.6"W	18.4	21.2	40.0	66.9	84.2	112.8
GS-14	South East of Rock Springs Road	42°26'21.7"N 78°38'56.0"W	16.7	20.9	52.6	110.7	134.9	210.0
GS-15	South East of Rock Springs Road	42°26'21.5"N 78°38'53.9"W	26.7	34.4	100.1	222.0	255.0	383.5
GS-16	South East of Rock Springs Road	42°26'24.2"N 78°38'51.6"W	15.4	19.4	47.5	86.1	101.4	123.1
GS-17	South East of Rock Springs Road	42°26'25.4"N 78°38'47.3"W	15.2	19.0	41.8	84.0	114.7	157.9
GS-18	Near Fox Valley Rd	42°26'00.8"N 78°37'51.8"W	14.2	19.6	49.7	109.7	127.0	267.9
GS-19	Near Fox Valley Rd	42°26'02.1"N 78°37'53.7"W	14.2	20.9	56.0	112.4	138.4	170.8
GS-20	Near Fox Valley Rd	42°25'59.7"N 78°37'47.7"W	19.6	25.4	59.4	114.1	128.0	168.9
GS-21	Near Fox Valley Rd	42°27'07.7"N 78°38'25.8"W	16.1	18.8	36.1	77.1	111.5	243.7
GS-22	Heinz Creek	42°27'07.9"N 78°38'29.4"W	17.7	22.2	52.6	155.2	199.5	324.1
GS-23	Heinz Creek	42°27'06.2"N 78°38'30.9"W	17.1	20.0	44.0	108.0	124.2	162.2
GS-24	Buttermilk Creek	42°27'10.9"N 78°38'40.0"W	14.7	18.0	36.2	77.5	90.0	141.0
GS-25	N. of fire hall, Buttermilk Creek	42°23'57.1"N 78°36'28.0"W	11.4	18.9	53.2	125.6	202.5	353.5
GS-26	N. of fire hall, Buttermilk Creek	42°24'03.2"N 78°36'30.6"W	17.5	23.0	53.6	108.5	128.0	180.0
GS-27	Buttermilk Creek	42°25'39.9"N 78°37'30.6"W	7.7	12.6	42.9	96.9	127.6	166.7
GS-28	Cattaraugus Creek	42°28'51.8"N 78°40'54.5"W	9.5	13.2	43.4	99.8	119.9	145.7
GS-29	Cattaraugus Creek	42°29'43.9"N 78°38'26.7"W	4.6	5.9	20.1	54.2	62.3	78.0
GS-30	Gooseneck Creek	42°26'17.1"N 78°37'54.2"W	7.9	12.1	40.6	99.8	124.6	163.5
GS-31	Gooseneck Creek	42°26'19.6"N 78°37'42.7"W	6.9	12.2	41.0	112.2	140.4	173.2
GS-32	Gooseneck Creek	42°26'19.1"N 78°37'28.6"W	10.5	16.2	53.8	142.9	168.8	228.8
GS-33	Gooseneck Creek	42°26'20.2"N 78°37'08.7"W	8.5	13.6	52.5	154.3	225.0	360.7
GS-34	Gooseneck Creek	42°26'34.3"N 78°36'51.5"W	7.2	12.5	74.6	195.8	234.4	322.9
GS-35	Gooseneck Creek	42°26'37.0"N 78°36'38.5"W	5.9	8.5	40.0	105.7	138.4	207.5
GS-36	Gooseneck Creek	42°26'38.9"N 78°36'20.5"W	4.9	8.6	69.4	196.0	186.3	404.6
GS-37	Gooseneck Creek	42°26'42.7"N 78°36'08.1"W	6.8	10.1	42.7	112.9	153.0	280.7
GS-38	Gooseneck Creek	42°26'51.6"N 78°35'57.3"W	9.4	13.1	54.7	212.3	299.1	405.5
GS-39	Gooseneck Creek	42°26'59.0"N 78°35'46.3"W	12.2	20.6	78.0	201.4	280.7	396.4
GS-40	Gooseneck Creek	42°27'04.4"N 78°35'32.2"W	7.8	12.0	59.8	165.1	231.6	351.4
GS-41	Gooseneck Creek	42°27'08.9"N 78°35'18.4"W	6.6	9.5	38.1	76.5	88.5	115.0
GS-42	Gooseneck Creek	42°27'13.7"N 78°35'04.1"W	12.5	19.5	72.3	168.3	216.3	326.6
GS-43	Creek leading into Buttermilk Creek	42°27'13.7"N 78°35'04.1"W	10.0	13.1	39.7	119.1	168.9	265.7
GS-44	Creek leading into Buttermilk Creek	42°27'15.7"N 78°38'12.2"W	15.6	26.6	104.3	189.8	249.4	375.8
GS-45	Creek leading into Buttermilk Creek	42°27'17.2"N 78°37'41.0"W	11.7	19.9	67.5	154.5	210.0	306.4
GS-46	Creek leading into Buttermilk Creek	42°27'10.6"N 78°38'25.4"W	5.6	7.4	28.4	125.0	186.3	265.7
GS-47	Creek leading into Buttermilk Creek	42°27'05.2"N 78°38'33.3"W	13.0	21.7	100.6	276.7	364.9	438.5
GS-48	Buttermilk Creek	42°27'31.1"N 78°38'44.1"W	9.8	15.1	85.4	228.0	250.9	368.1
GS-49	Buttermilk Creek	42°26'53.9"N 78°38'30.4"W	10.9	16.0	60.8	118.0	148.8	243.8

4. Discussion

The goals of this section are to provide a landscape perspective for the observed infiltration rates, erodibility indices, and grain size distributions, to provide the landscape modeling activities with

usable information, and to compare these on-site determinations of key parameters with those used previously in the Final Environmental Impact Statement (2010).

While the focus of this study was to characterize those geological materials of interest, and in particular the Lavery Till, the infiltration rates presented in Table 2 were measured for a variety of geological materials with a wide range of landscape positions, geological origins, and spatial representations. Even ignoring the anomalously high rate of infiltration measured at HT-32 (Table 2), there does not appear to be a systematic pattern of infiltration rate with elevation or with terrace (Figure 13). In general, the Heinz Creek Terrace data display greater variability than the other locations.

Figure 13. Variation in infiltration rate with elevation for each terrace. Error bars are standard deviation for infiltration rate and 5 ft uncertainty in elevation.

For the purpose of modeling landscape evolution, there are several ways these infiltration data can be aggregated. The first approach is simply to derive an average infiltration rate (and standard deviation) using all of the data (i.e., equally weighted). In this case, the average infiltration rate for the entire set of measurements (still excluding HT-32) is 32.8±59.1 mm/hr or 20.98±37.8 m³/yr (Figure 14).

Figure 14. Variation in infiltration rate with elevation using different aggregation methods. Error bars are standard deviation for infiltration rate and applicable elevation range.

A second approach to aggregate the data is to determine a vertical variation in infiltration at discrete elevation intervals within the landscape. Here, all infiltration data were aggregated into 25-ft elevation intervals and their average and standard deviations determined. These values are shown in Figure 14 and Table 5. Average (and standard deviation) infiltration rates can vary vertically from 0.8 ± 0.4 mm/hr (0.48 ± 0.23 m³/yr) for the elevation interval of 1400 to 1425 ft to 78.4 ± 84.6 mm/hr (50.14 ± 54.08 m³/yr) for the elevation interval of 1225 to 1250 (Table 2). Although such vertical representation of infiltration rate might prove beneficial for modeling purposes, the gaps in the data due to lack of information would need to be reconciled.

A final approach to aggregate the data is to focus on frequency of occurrence of infiltration rate. There is a higher proportion of measured infiltration rates that are less than 10 mm/hr (5.88 m³/yr); about 58% of all measurements fall below this infiltration rate (Table 2). This aggregation approach

would simply accept that these more frequent observations of relatively low infiltration rate better represent the geological materials of interest within the landscape. In this case, the average (and standard deviation) infiltration rate for those measurements less than 10 mm/hr (5.88 m³/yr), as noted above, is 2.1 ± 2.1 mm/hr or 1.33 ± 1.37 m³/yr (Figure 14).

Table 5: Variation of infiltration rate aggregated and averaged by selected landscape elevation ranges.

Elevation Range (ft)	Infiltration R	Rate (mm/hr)	Infiltration 1	Rate (m ³ /yr)
	Average	Standard Deviation	Average	Standard Deviation
1150 to 1175	12.0	17.3	7.66	11.07
1175 to 1200	1.5	0.93	0.96	0.60
1200 to 1225	21.2	29.4	13.55	18.82
1225 to 1250	78.4	84.6	50.14	54.08
1250 to 1275	20.7	34.6	13.21	22.11
1275 to 1300	0.9	0.06	0.59	0.05
1300 to 1325	NA	NA	NA	NA
1325 to 1350	NA	NA	NA	NA
1350 to 1375	NA	NA	NA	NA
1375 to 1400	21.7	28.8	13.85	18.38
1400 to 1425	0.8	0.4	0.48	0.23

These infiltration rates are corroborated by those used previously in site assessment. In the Final Environmental Impact Statement (2010, Appendix F), the following infiltration rates were used in simulating the long-term landscape evolution of the WVDP: 3.82, 8.29, 16.8, 19.4, 68.7 mm/hr. The values employed in these previous assessments agree well with the values reported herein using the different aggregation approaches, especially the lower-magnitudes rates.

Similar to the infiltration data, the erodibility indices presented in Table 3 were measured for a variety of geological materials with a wide range of landscape positions, geological origins, and spatial representations. The erodibility indices derived using the Scour Depth Solution will be the focus of the current discussion. Figure 15 plots these erodibility data within the landscape, showing that τ_c ranges from 12 to 90 Pa (a variation 8×) and k_d ranges from 0.20 to 7.93 cm³/N-s (a variation of 40×). In general, as the value of τ_c increases, the value of k_d decreases (see Hanson and Simon, 2001). Moreover, there does not appear to be a systematic variation in erodibility with elevation.

Figure 15. Variation in the critical tractive shear stress τ_c and the erodibility coefficient k_d with elevation for each terrace. Error bars are errors for erodibility indices and 5 ft uncertainty in elevation.

Again for the purpose of modeling landscape evolution, attempts were made to aggregate these erodibility indices. The first is simply to derive an average (and standard deviation) of critical tractive shear stress τ_c and erodibility coefficient k_d using all of the data (i.e., equally weighted). In this case, the average τ_c value is 41.73±16.40 Pa and the average k_d value is 2.05±1.75 cm³/N-s (Figure 16). Next, all erodibility indices were aggregated into 25-ft elevation intervals and their average and standard deviations determined. These values are shown in Figure 16 and Table 6. Values of τ_c appear relatively constant in magnitude with changes in elevation within the landscape, and these are close to about 40 Pa (Figure 16, Table 6). There is a notable increase in τ_c within the 1200 to 1225 ft elevation interval. In contrast, aggregated values of k_d show much greater variation with elevation, ranging from 0.15±0.02 cm³/N-s within the 1200 to 1225 ft elevation interval to 5.40 ± 0.086 cm³/N-s within the 1350 to 1375 interval (Figure 16, Table 6). It is also noted here that no erodibility indices were determined for the 1300 to 1350 ft elevation interval. Lastly, a frequency analysis was performed to determine the values of the most commonly measured indices. On the basis of the τ_c values, it was found than 75% of the measurements fall within the range of 30 to 60 Pa. Using this frequency of occurrence to filter the data, the aggregated average (and standard deviation) of critical tractive shear stress τ_c is 41.70±7.60 Pa and 1.76±1.20 cm³/N-s for the erodibility coefficient k_d (Figure 16).

Figure 16. Variation in the critical tractive shear stress τ_c and erodibility coefficient k_d with elevation using different aggregation methods. Error bars are standard deviation for the erodibility indices and applicable elevation range. Note that the spatial average value of τ_c is nearly identical to the average value by frequency.

Table 6: Variation of critical tractive shear stress τ_c and erodibility coefficient k_d aggregated and averaged by selected landscape elevation ranges.

Elevation Range (ft)	1	T _c (Pa)	$k_d (\mathrm{cm^3/N}\text{-s})$		
	Average	Standard Deviation	Average	Standard Deviation	
1150 to 1175	39.48	16.33	1.72	0.72	
1175 to 1200	46.19	9.37	0.68	0.64	
1200 to 1225	76.88	12.30	0.15	0.02	
1225 to 1250	36.19	15.76	2.80	2.19	
1250 to 1275	36.51	5.84	3.81	0.61	
1275 to 1300	38.67	13.51	2.22	2.67	
1300 to 1325	NA	NA	NA	NA	
1325 to 1350	NA	NA	NA	NA	
1350 to 1375	35.53	5.69	5.40	0.86	
1375 to 1400	39.48	6.48	2.36	0.57	
1400 to 1425	51.31	21.23	0.64	0.10	

These erodibility indices also are corroborated by those used previously in site assessment. In the Final Environmental Impact Statement (2010, Appendix F), the following values of the critical tractive shear stress τ_{ϵ} were used in simulating the long-term landscape evolution of the WVDP: 1, 4, 16, 80, and 400 Pa for the bedrock, and 4, 10, 23, 54, and 124 for the regolith. These compare well with the values reported here, ca. 40 Pa. In addition, the following values of the erodibility coefficient k_d were used in simulating the long-term landscape evolution of the WVDP: 0.032, 0.317, 3.17, and 317.1 cm³/N-s for the till and 317.1 cm³/N-s for the regolith. These also compare well with the values reported here, ca. 2 cm³/N-s, especially the lower-magnitudes values.

It is common for streams whose beds are composed of sediment mixtures to exhibit downstream fining (Rice, 1999). Several grain size distributions listed in Table 4 were collected along continuous reaches of Heinz Creek (GS-47, GS-23, GS-22, GS-46, GS-44, GS-10, GS-11, GS-13, GS-12, GS-45, GS-6, and GS-5, listed from downstream to upstream), Gooseneck Creek (GS-30, GS-31, GS-32, GS-33, GS-7, GS-34, GS-35, GS-36, GS-37, GS-38, GS-39, GS-40, GS-41, and GS-42, listed from downstream to upstream), and Buttermilk Creek (GS-48, GS-24, GS-49, GS-19, GS-18, GS-20, GS-27, GS-26, GS-25, and GS-9, listed from downstream to upstream). Figure 17 summarizes the longitudinal variations of each grain size percentile of the stream bed for each creek, plotted as a function of distance upstream of the creek's confluence. Analysis of the spatial trends for each grain size percentile shows no statistically significance for any dataset. Three grain size percentiles do show trends with distance that are nearly statistically significant. These are D_{84} (p=0.07), D_{90} (p=0.08), and D_{95} (p=0.10) along Heinz Creek (Figure 17), but these are negative correlations; they show a near statistically significant trend in downstream coarsening (upstream fining). These data suggest that no systematic variation exists in grain size along the beds of these three creeks.

Given that the grain size distributions along selected stream beds do not show statistically significant variations, these data can be aggregated for the purpose of modeling landscape evolution. A Pearson correlation coefficient was derived for each grain size pair (GS-1 vs. GS-2, GS-1 vs. GS-3, etc.), and an average correlation coefficient then was determined for each grain size dataset in comparison to the entire dataset. Those grain size data that had lowest correlation coefficients (less than 0.7) within the population were identified, and these included the following: GS-2, GS-15, GS-29, GS-34, GS-36, GS-39, GS-41, GS-43, GS-44, GS-45, GS-46, GS-47, and GS-48. The remaining data were aggregated, and a representative grain size distribution for the region can be determined (Figure 18). The grain size percentiles for these aggregated data are as follows: $D_{10} = 11$ mm, $D_{16} = 17$ mm, $D_{50} = 47$ mm, $D_{84} = 117$ mm, $D_{90} = 154$ mm, and $D_{95} = 225$ mm. In general, these aggregated grain size percentiles are finer than (or smaller in magnitude) in comparison to the ensemble average values presented above, but still in agreement with those observed by Boothroyd et al. (1979) and used in the FEIS (2010).

Figure 17. Longitudinal variations in grain size percentiles for stream bed sediments along Heinz Creek, Gooseneck Neck, and Buttermilk Creek.

Figure 18. Data sheet, grain size distribution and plots, and derived grain size percentiles determined for the aggregated Wolman pebble count data.

Only limited grain size statistics of the stream beds in the WNYNSC have been previously reported. Boothroyd et al. (1979) measured the long axis of the largest clasts on exposed bars along Buttermilk Creek. They reported that maximum clast size ranged from 210 to 305 mm (with an average of 250 mm), and that no systematic variation of this clast size occurred in the downstream direction. In the FEIS (2010), a mixture of bed sediment sizes ranging from 8 to 128 mm with median grain diameter of 32 mm, was employed in simulating the long-term landscape evolution of the stream channels

near the WVDP. The grain size data reported herein are in agreement with the observations reported by Boothroyd et al. (1979) and those used in the FEIS (2010).

5. Conclusions

Enviro Compliance Solutions, Inc. and the West Valley Erosion Working Group recommended erosion assessment to be performed as part of the Phase 1 Studies at the West Valley Demonstration Project and Western New York Nuclear Service Center. These studies seek to improve forecasts of future erosion at this facility, which includes a focus on recent erosion and deposition processes. The EWG identified a list of environmental parameters that would reduce uncertainties in predicting future erosion using a landscape evolution model (WVDP Erosion Working Group, 2015). These parameters included bed-sediment entrainment thresholds, soil/tilldetachment thresholds, and soil-infiltration capacities. The objective of this report is to summarize the field activities conducted this past summer (2016), to review the methods employed, and to tabulate and interpret the data collected. Three tasks were undertaken: (1) Task 2.2: Infiltration and Soil Moisture Determination, (2) Task 2.5: Erodibility of Cohesive Sediment, and (3) Task 2.6: Erodibility of Clastic Sediment in Selected Gullies, Stream Channels, and Streambanks. This work was greatly facilitated by the EWG activities focused on Study 1 - Terrain Analysis, Age Dating, and Paleoclimate, as these researchers employed a backhoe to expose within trenches those geological materials of interest. The infiltration and erodibility studies were performed in these trenches, restricted in space to three field locations: the Heinz Creek Terrace, the Tree Farm Terrace, and the Abandoned Meander Terrace.

For Task 2.2, field activities sought to quantify volumetric moisture content and infiltration capacity or rate for selected surficial geological materials, and this was accomplished using a soil moisture probe and a double ring infiltrometer. A total of 36 soil moisture measurements were obtained and 37 infiltration studies were conducted at the three field locations. It was found that soil moisture values and infiltration rates were greatly conditioned by the composition, texture, and structure of the geological material tested. Soil moisture rates varied from 2.2±0.5% for the coarsest-grained, most unconsolidated sediment and to 47.8±2.3% for the finest-grained, most consolidated sediment to 852.7±59.6 mm/hr (545.01±38.08 m³/yr) for the finest-grained, most unconsolidated sediment.

Three approaches were used to aggregate these infiltration rate data to place these into a landscape perspective. First, an ensemble average of all measurements (excluding one outlier) produced a value of 32.8±59.1 mm/hr (20.98±37.8 m³/yr). Second, infiltration rates were aggregated into discrete 25-ft elevations and averaged, which produced variable rates ranging from 0.9±0.06 mm/hr (0.59±0.05 m³/yr) for the 1275 to 1300 ft interval to 78.4±84.6 mm/hr (50.14±54.08 m³/yr) for the 1225 to 1250 ft interval. Third, a frequency analysis of the infiltration rate data showed that about

58% of all measurements fell below a rate of 10 mm/hr (5.88 m 3 /yr). Using this as upper limit, an average infiltration rate for these measurements produced a value of 2.1 ± 2.1 mm/hr (1.33 ± 1.37 m 3 /yr). These field measurements of saturated infiltration rate are close in magnitude to these values used previously to simulate the evolution of the landscape (FEIS, 2010).

For Task 2.5, field activities sought to quantify the erodibility indices for selected surficial geological materials, and this was accomplished using the jet erosion test (JET). The JET was employed to estimate the erodibility of glacial materials by simulating erosion by a water over a fixed period of time (Hanson, 1990a; Hanson, 1990b). Once these data were collected, the critical tractive shear stress τ_e and the erodibility coefficient k_d can be derived using three solution methods (Blaisdell, Iterative, and Scour Depth), premised on the assumption that a linear excess shear stress model for erosion rate is appropriate (Eq. 1). Following simple procedures for quality control, a total of 37 JET datasets were deemed acceptable for further analysis. It was found that the Scour Depth Solution method produced the lowest error for the prediction of the scour hole erosion rate derived from the JET apparatus, and this solution produced τ_e values ranging from 11.59 \pm 0.70 to 90.16 \pm 5.41 Pa and k_d values ranging from 0.16 \pm 0.02 to 7.93 \pm 0.79 cm³/N-s. A general inverse relationship between τ_e and k_d was observed, as expected.

Three approaches were used to aggregate these erodibility indices to place them into a landscape perspective. First, an ensemble average of all measurements produced values of 41.73 ± 16.40 Pa for τ_c and 2.05 ± 1.75 cm³/N-s for k_d . Second, erodibility indices were aggregated into discrete 25-ft elevations and averaged. This produced variable values of τ_c with elevation ranging from 35.53 ± 5.69 Pa for the 1350 to 1375 elevation interval to 76.88 ± 12.30 Pa for the 1200 to 1225 elevation interval. This approach also produced variable rates of k_d with elevation ranging from 0.15 ± 0.02 cm³/N-s for the 1200 to 1225 elevation interval to 5.40 ± 0.86 cm³/N-s for the 1350 to 1375 elevation interval. The aggregated values of k_d displayed greater variability with elevation as compared to the aggregated values of τ_c . Third, a frequency analysis of the τ_c data showed that 75% of the measurements fell within the range of 30 to 60 Pa. Using this frequency of occurrence to filter the data, the aggregated average value of τ_c is 41.70 ± 7.60 Pa and the aggregated average value of k_d is 1.76 ± 1.20 cm³/N-s, which are very similar to the ensemble averages presented above. These field measurements of the erodibility indices for the glacial materials are close in magnitude to those values used previously to simulate the evolution of the landscape (FEIS, 2010).

For Task 2.6, field activities sought to quantify the surface grain size statistics of selected stream channels, and this was accomplished using Wolman pebble counts. A total of 49 pebble counts were conducted at a variety of stream channel locations and waterways, including several locations along Heinz Creek, Gooseneck Creek, and Buttermilk Creek. It was found that the stream channels are composed primarily of very coarse gravel, and the ensemble average (and standard deviation) grain size percentiles for all streams included the following: $D_{10} = 12 \pm 5$ mm, $D_{50} = 53 \pm 18$ mm, and $D_{90} = 170 \pm 62$ mm. Yet analysis of the longitudinal trends in surface grain size percentiles along Heinz Creek, Gooseneck Creek, and Buttermilk Creek did not show any

statistically significant variation; that is, no statistically significant downstream fining of the bed surface grain size distribution was observed. A Pearson correlation analysis of these grain size data identified those datasets that showed the weakest correlations within the population (13 in total). An aggregated grain size distribution representative of the WNYNSC, which excluded these 13 grain size datasets, produced the following grain size percentiles: $D_{10} = 11$ mm, $D_{16} = 17$ mm, $D_{50} = 47$ mm, $D_{84} = 117$ mm, $D_{90} = 154$ mm, and $D_{95} = 225$ mm.

6. References

Al-Madhhachi, A.T., G.J. Hanson, G.A. Fox, A.K. Tyagi, and R. Bulut, 2013a, Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests, Transactions of the ASABE, 56(2), 489-504.

Al-Madhhachi, A. T., G.J. Hanson, G.A. Fox, A.K. Tyagi, and R. Bulut, 2013b, Measuring erodibility of cohesive soils using laboratory "mini" jet erosion tests, Transactions of the ASABE, 56(3), 901-910.

ASTM D3385-09, Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer, ASTM International, West Conshohocken, PA, 2009, www.astm.org.

Blaisdell, F. W., L.A. Clayton, and G.G. Hebaus, 1981, Ultimate dimension of local scour, J. Hydraulics Division, ASCE 107(HY3), 327-337.

Daly, E.R., G.A. Fox, T. Al-Madhhachi, and R.B. Miller, 2013, A scour depth approach for deriving erodibility parameters from jet erosion tests, Transactions of the ASABE, 56, 2343-2351.

Hanson, G.J., 1990a, Surface erodibility of earthen channels at high stresses: I. Open channels testing, Transactions of the ASAE, 33, 127-131.

Hanson, G.J., 1990b, Surface erodibility of earthen channels at high stresses: II. Developing an in situ testing device, Transactions of the ASAE, 33, 132-137.

Hanson, G.J., and K.R. Cook, 2004, Apparatus, test procedures, and analytical methods to measure soil erodibility in situ, Applied Eng. in Agric. 20(4), 455-462.

Hanson, G. J., and A. Simon, 2001, Erodibility of cohesive streambeds in the loess area of the midwestern USA, Hydrological Processes, 15(1), 23-38.

Johnson, A.I., 1963, A field method for measurement of infiltration, U.S. Geological Survey Water-Supply Paper, 1544-F, U.S. Government Printing Office, Washington, 27 pp.

Rice, S., 1999, The nature and controls on downstream fining within sedimentary links, Journal of Sedimentary Research, 69, 32-39.

Simon, A., R. Thomas, and L. Klimetz, 2010, Comparison and experiences with field techniques to measure critical shear stress and erodibility of cohesive deposits, 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27-July 1, 2010.

Stein, O.R., and D.D. Nett, 1997, Impinging jet calibration of excess shear sediment detachment parameters, Transactions of the ASAE, 40(6), 1573-1580.

United States Department of Energy (DOE) and New York State Energy Research and Development Authority (NYSERDA), 2010, Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center, January, 2010.

West Valley Phase 1 Studies Erosion Working Group and Enviro Compliance Solutions, 2015, Phase 1 Erosion Study Plan, prepared for United States Department of Energy, and New York State Energy Research and Development Authority, June 19, 2015, 47 pp.

Wolman, M.G., 1954, A method of sampling coarse river-bed material, Transaction, American Geophysical Union, 35(6), 951-956.

7. Acknowledgements

Chris Allan, Chris Ibsen, and Kathryn Rozwod worked fulltime during the summer of 2016 and assisted in the collection, processing, and collation of field data. Kathryn Rozwod took the lead on processing the JET data, with the assistance of Mohammad Ghaneeizad and Maliheh Karamigolbaghi. Denny Feldman and Tim Zerfas provided technical and logistical support for the field activities. Fangyu Zeng and Chengxi Zhu provided assistance in preparing this report.

Appendix 1. Maps and plots for all trench locations near the West Valley Demonstration Project.

Location map for all field activities (from R. Young).

Location map for all trenches (blue circles) and ground penetrating lines (red lines) for the Heinz Creek Terrace area (from R. Young). Trench locations are identified as HT-1, HT-2, etc.

Location map for all trenches (blue circles) and ground penetrating lines (red lines) for the Upper Heinz Creek Terrace area (from R. Young). Trench locations are identified as UHT-1, UHT-2, etc.

Location map for all trenches (blue circles) and ground penetrating lines (red lines) for the Tree Farm Terrace area (from R. Young). Trenches as numbered sequentially (1, 2, etc) and are noted herein as FT-1, FT-2, etc.

Location map for all trenches (blue circles) for the Abandoned Meander Terrace area (from R. Young). Trenches as numbered sequentially (MT-31, MT-32, etc.)

Location map for all trenches (blue circles) and ground penetrating lines (red lines) for the Upper Abandoned Meander Terrace area (from R. Young). Trenches as numbered sequentially (1, 2, etc) and are noted herein as UMT-1, UMT-2, etc.

Appendix 2. Summary of double ring infiltrometer tests and soil moisture measurements obtained at the following trench locations (numbered by trench): Heinz Terrace (HT), Upper Heinz Terrace (UHT), Tree Farm (FT), Abandoned Meander (MT), and Upper Abandoned Meander (UMT).

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-3</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Mo	isture (%)	StDev		
Project Identification:	West Valley Demonstration Project	•					
Test Location:	нт-з						
Soil Type:	Clay						
Tested By:	CI, KR				Ring area (mm²)	72966	
Date:	6/20/2016				Ring area (m ²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	22.2						
10	20.9		1.3	13	78.00	49.86	
20	20.4	22.8	0.5	5	30.00	19.18	
30	22.3		0.5	5	30.00	19.18	
40	21.9		0.4	4	24.00	15.34	
50	21.5	23.5	0.4	4	24.00	15.34	
60	23		0.5	5	30.00	19.18	
70	22.8		0.2	2	12.00	7.67	
80	22.4		0.4	4	24.00	15.34	
90	22		0.4	4	24.00	15.34	
							STDe
				Average Infiltration	on Rate (mm/hr)	23.00	5.90
				Average Infiltration	on Rate (m³/yr)	14.70	3.77
					Time (min)		
					0	23.00	
					90	23.00	
		Infiltration D	ata, HT3				
	90 -						
	_ 80						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	Ē"						
	€ 60 }						
	₽ 50]						
	E 10 1						
	5 ⁴⁰	\					
	₩ 30]	•					
	<u></u>	.	•		-•		
	<u></u>						
	= 10			•			
	0 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	0 10		50 60	70 80	90 100		
		Time	(min)				
		-					

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-5</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
		,	J	40.7	4.53		
Project Identification:	West Valley Demonstration Project	37.8					
Test Location:	HT-5	47.6					
Soil Type:	Clay	39.2					
Tested By:	CI, KR	42.8			Ring area (mm²)	72966	
Date:	6/21/2016	36.3			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	1
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	26.5						
10	26.4		0.1	1	6.00	3.84	
20	25.8		0.6	6	36.00	23.01	
30	25.2		0.6	6	36.00	23.01	-
40	25		0.2	2	12.00	7.67	
50	25		0	0	0.00	0.00	
60	25		0	0	0.00	0.00	
70	25		0	0	0.00	0.00	
80	25		0	0	0.00	0.00	
90	25		0	0	0.00	0.00	
100	24.9		0.1	1	6.00	3.84	
110	24.8		0.1	1	6.00	3.84	
120	24.7		0.1	1	6.00	3.84	
130	24.7		0	0	0.00	0.00	
	=		_		3.00	5.00	STDev
				Average Infiltration	on Rate (mm/hr)	3.60	3.29
				Average Infiltration		2.30	2.10
				Average minimum	Time (min)	2.00	2.10
					0	3.6	
					130	3.6	
					100	0.0	
		Infiltration Da	ata HT5				
	40.00						
	25.00	•					
	35.00 Luly 30.00 Eug 25.00 15.00 15.00 15.00 15.00 15.00	1					
	≥ 30.00 <u></u>						
	E ! /	\					
	© 25.00						
	20.00						
	<u> </u>	\					
	9 15.00	7					
	10.00						
	<u> </u>						
	5.00			/	<u></u>		
	0.00		• • •				
	0 20	40 60	80	100 120	140		
		Time	e (min)				
		1					

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-7</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				41.2	1.63		
	West Valley Demonstration Project	42.9					
	HT-7	42.1					
	Clay	39.4			2	=	
	SB, JZ, CI, KR, CA	40.2			Ring area (mm²)	72966	
Date:	6/15/2016 Test done in reverse with ruler readin				Ring area (m²)	0.072966	
	rest done in reverse with ruler readin	gs going nigh to low			Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	18.1	,	, ,	,	, ,	(,,,	
15	17.5		0.6	6.0	24.00	15.34	
30	17.9	Topped 14	0.4	4.0	16.00	10.23	
		Topped 14	0.4	6.0		15.34	
45	14.6				24.00		
60	14.9		0.3	3.0	12.00	7.67	
75	15.2	Topped 10.5	0.3	3.0	12.00	7.67	
90	11.4		0.9	9.0	36.00	23.01	
105	13.3		1.9	19.0	76.00	48.58	
120	14.6		1.3	13.0	52.00	33.24	
135	14.6		0.0	0.0	0.00	0.00	
							STDev
				Average Infiltration F	Rate (mm/hr)	28.00	23.49
				Average Infiltration F		17.90	15.02
				Average initiation is	Time (min)	17.50	10.02
					0	28	
					135	28	
		Infiltuat	tion Data HT7				
	20.00	Imilitra	lion Data H17				
	80.00			•			
	70.00			$\overline{}$			
	¥ 60 60						
	£ 00.00						
	50.00		/	•			
	\$ 40.00						
	£ 40.00		<i>•</i>	\			
	을 30.00		/	· \	 		
	50.00 11 20.00 11 20.00 11 20.00 11 20.00 11 20.00 11 20.00						
	<u> </u>	*	_	\			
	= 10.00	•	•	\			
	0.00						
	0	20 40 60	80	100 120	140 160		
			Time (min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-8</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				10.9	1.03		
	West Valley Demonstration Project	9.5					
Test Location:	HT-8	11.5 12.1					
Soil Type: Tested By:	Gravel CI, KR	12.1			Ring area (mm²)	72966	
Date:	6/21/2016	10.2			Ring area (m²)	0.072966	
Date.	Note: Test stopped due to drill	10.2			rang area (m)	0.072300	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	22						
5	19		3	30	360.00	230.11	
10	17	Topped 22	2	20	240.00	153.40	
15	19.8		2.2	22	264.00	168.74	
20	17.8		2	20	240.00	153.40	
25	15.8		2	20	240.00	153.40	
30	14		1.8	18	216.00	138.06	
							STDev
				Average Infiltration	on Rate (mm/hr)	240.00	16.97
				Average Infiltration	on Rate (m³/yr)	153.40	10.85
					Time (min)		
					0	240	
					30	240	
		Infiltration D	ata HT8	l			
	400.00	- Inniciacion B					
		•					
	£ 350.00						
	₹ 300.00						
	E 250.00						
	a 200 00			•			
	£ 200.00						
	2 150.00						
	100.00						
	350.00 14 11 100.00 150.						
	0.00						
	0.00	5 10 15	20	25 30	35		
			ne (min)				
		· · ·	` ,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-11</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
•	,	` '		26.5			
	West Valley Demonstration Project	28.4					
Test Location:	HT-11	23.2					
Soil Type:	Sandy Clay	30.4			-, , 2,		
Tested By:	CI, KR	23			Ring area (mm²)	72966	
Date:	6/22/2016	27.5			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	16	roppou (non otali noigin)	Zinoronee (em)	2	(,	(, y . ,	
			0.0	2	24.00	45.24	
5	15.8		0.2	2	24.00	15.34	
10	15.7		0.1	1	12.00	7.67	
15	15.5		0.2	2	24.00	15.34	
20	15.4		0.1	1	12.00	7.67	
25	15.4		0	0	0.00	0.00	
30	15.1		0.3	3	36.00	23.01	
35	14.9		0.2	2	24.00	15.34	
40	14.9		0	0	0.00	0.00	
45	14.8		0.1	1	12.00	7.67	
50	14.7		0.1	1	12.00	7.67	
55	14.5		0.2	2	24.00	15.34	
60	14.4		0.1	1	12.00	7.67	
65	14.1		0.3	3	36.00	23.01	
70	14		0.1	1	12.00	7.67	
75	13.9		0.1	1	12.00	7.67	
80			0.1	1			
	13.8				12.00	7.67	
85	13.7		0.1	1	12.00	7.67	
90	13.6		0.1	1	12.00	7.67	
95	13.6		0	0	0.00	0.00	
100	13.5		0.1	1	12.00	7.67	
105	13.4		0.1	1	12.00	7.67	
110	13.2		0.2	2	24.00	15.34	
115	13.1		0.1	1	12.00	7.67	
120	13		0.1	1	12.00	7.67	
							STDev
				Average Infiltration	on Rate (mm/hr)	12.00	5.37
				Average Infiltration	on Rate (m³/yr)	7.67	3.43
					Time (min)		
					0	12	
					120	12	
					120	12	
		Infiltration [Data HIII				
	40.00						
	35.00	•	•				
		Λ ,	1				
	(L) 30.00 E E) 25.00	-1	1				
	E :	\					
	25.00	• •		₹			
	# 20 00 ± \ /\			/\			
	20.00			/ \			
	. □ 15.00		_	/_			
	<u>`</u> <u>}¥</u>	, - - - - - - - - - 	- 		·		
	# 20.00 Signature	\		1			
	5.00	\/ \/		_/			
	5.00	\/ \/		\/			
	0.00	- V V 		¥ , ,			
	0 20	0 40 60	80	100 12	20 140		
			me (min)				
			. ,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-15</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				30.6	1.44		
	West Valley Demonstration Project	30.7					
Test Location:	HT-15	29.3					
Soil Type:	Clay	32.8					
Tested By:	CI	30.8			Ring area (mm²)	72966	
Date:	6/27/2016	29.3			Ring area (m²)	0.072966	
					1.00 0 5 1	1 50 0 0 0	
Flores d Time (min)	Inna Bina Baadina (am)	T	Diff	D:#	Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	21.2						
15	21.2		0	0	0.00	0.00	
30	21.2		0	0	0.00	0.00	
45	21.1		0.1	1	4.00	2.56	
60	21.1		0	0	0.00	0.00	
75	21		0.1	1	4.00	2.56	
90	21		0	0	0.00	0.00	
105	21		0	0	0.00	0.00	
120	20.9		0.1	1	4.00	2.56	
135	20.9		0	0	0.00	0.00	
150	20.9		0	0	0.00	0.00	
							STDev
				Average Infiltration		1.50	2.07
				Average Infiltration	on Rate (m³/yr)	0.96	1.32
					Time (min)		
					0	1.5	
					150	1.5	
		Infiltration D	ata HT15				
	4.50						
	4.00	•		•			
	£ 3.50	\wedge		\wedge			
	£ 3.30	/\		/\			
	₫ 3.00		1	/ \			
	<u>ت</u> 2.50		_				
	Ra 3 00	/ / /	\	/ \			
	1111 1.50	/ / /	1	/			
	1.50	/\/		/\-			
	₫ 1.00 📗	_/					
	□ 0.50	/ \/	/				
	0.00		100	420	160		
	0 20	40 60	80 100	120 1	160		
		Tim	e (min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-16</u>

Daubla Bing Infiltrama	tor Toot (42" 9 24" Bings)	Cail Maiatura (9/)	Averene Seil Mei	oture (9/)	C4Dev		
Double King Inflitrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	36.9	StDev 2.68		
Project Identification:	West Valley Demonstration Project	33.6		30.3	2.00		
Test Location:	HT-16	36.7					
Soil Type:	Clay	38.6					
Tested By:	CI,KR	35.3			Ring area (mm²)	72966	
Date:	6/22/2016	40.4			Ring area (m ²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	16						
5	16		0	0	0.00	0.00	
10	15.9		0.1	1	12.00	7.67	
15	15.9		0	0	0.00	0.00	
20	15.9		0	0	0.00	0.00	
25	15.9		0	0	0.00	0.00	
30	15.9		0	0	0.00	0.00	
35	15.9		0	0	0.00	0.00	
40	15.9		0	0	0.00	0.00	
45	15.9		0	0	0.00	0.00	
50	15.9		0	0	0.00	0.00	
55	15.9		0	0	0.00	0.00	
60	15.9		0	0	0.00	0.00	
65	15.9		0	0	0.00	0.00	
70	15.9		0	0	0.00	0.00	
75	15.9		0	0	0.00	0.00	
			0	0		0.00	
80	15.9				0.00		
85	15.9		0	0	0.00	0.00	
90	15.9		0	0	0.00	0.00	
95	15.9		0	0	0.00	0.00	
100	15.9		0	0	0.00	0.00	
105	15.9		0	0	0.00	0.00	
110	15.9		0	0	0.00	0.00	
115	15.9		0	0	0.00	0.00	
120	15.9		0	0	0.00	0.00	
	10.0				0.00	0.00	STDev
				Average Infiltration	n Data (mm/hr)	0.50	2.45
				Average Infiltration		0.32	1.57
					Time (min)		
					0	0.5	
				1	120	0.5	
		1.60 = :	LITAC				
	14.00	Infiltration Data	H116				
	14.00				_		
	12.00						
	£ 11.00						
	€ 10.00						
	Ē						
	<u>a</u> 8.00						
	8 1						
	10.00 Harding 10.00 Hard						
	te 400						
	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩						
	⊆ 2.00						
	1_/						
	0.00	• • • • • • • •	• • • • •	••••			
	0 20	40 60	80 10	0 120	140		
		Time (r	min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-20</u>

Project Identification: West Valley Demonstration Project 30.4	Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
Test Location: HT-20					26.4	3.02		
Soil Type: Cl. JZ 24.9 Ring area (mm²) 72968								
Tested By: Cl. JZ		HT-20						
Date: 6/28/2016 23.5						_ , , ,		
Elapsed Time (min) Inner Ring Reading (cm) Topped (new start height) Difference (cm) Difference (mm) (mm/hr) (m²/yr)								
Elapsed Time (min)	Date:	6/28/2016	23.5			Ring area (m ⁻)	0.072966	
Elapsed Time (min)						Infiltration Rate	Infiltration Rate	
0 25.6	Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)			
10 24.7 0.9 9 54.00 34.52 20 23.8 0.9 9 54.00 34.52 30 0.9 9 54.00 34.52 30 0.8 8 44.00 30.68 40 22.3 0.7 7 42.00 26.85 50 21.7 0.6 6 30.00 23.01 50 50 21.7 0.7 7 42.00 26.85 70 20.6 0.4 4 24.00 15.34 80 20.1 0.5 5 30.00 19.18 90 19.6 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 10.5 5 30.00 19.18 120 18.				, ,	, ,	, ,	, , ,	
20 23.8 0.9 9 54.00 34.52 30 0.8 8 48.00 30.68 40 22.3 0.7 7 42.00 26.85 50 21.7 0.6 6 36.00 23.01 50 50 21.7 0.6 6 36.00 23.01 50 50 21.7 0.7 7 42.00 26.85 50 21.7 0.7 7 42.00 26.85 50 21.7 7 0.6 6 6 36.00 23.01 50 50 50 50 50 50 50 50 50 50 50 50 50				0.0	0	54.00	34.52	
30 23 0.8 8 48.00 30.68 440 22.3 0.7 7 42.00 26.85 50 21.77 0.6 6 6 36.00 23.01 0.6 60 21 0.7 7 42.00 26.85 70 20.6 0.4 4 24.00 15.34 80 20.1 0.5 5 30.00 19.18 100 19.2 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 110 18.7 0.5 5 30.00 19.18 110 18.7 0.5 5 30.00 19.18 110 18.2 0.5 5 30.00 19.18 110 18.2 0.5 5 30.00 19.18 110 18.2 0.5 5 30.00 19.18 110 18.7 0.5 5 30.00 19.18 110 18.2 0.5 5 30.00 19.18 110 110 18.7 0.5 5 30.00 19.18 110 110 18.7 0.5 5 30.00 19.18 110 110 18.7 0.5 5 30.00 19.18 110 110 18.2 0.5 5 30.00 19.18 110 110 18.2 0.5 5 30.00 19.18 110 110 18.2 0.5 5 30.00 19.18 110 110 110 110 110 110 110 110 110 1				1				
40 22.3 0.7 7 42.00 26.85 50 21.17 0.6 6 36.00 22.01 60 21 0.7 7 42.00 26.85 70 20.6 0.4 4 24.00 15.34 80 20.1 0.5 5 30.00 19.18 90 19.6 0.5 5 30.00 19.18 110 19.2 0.4 4 24.00 15.34 111 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 Average Infiltration Rate (mn/hr) 28.00 3.10 Average Infiltration Rate (m/hyr) 17.90 1.98 Infiltration Data HT20								
50 21.7 0.6 6 36.00 23.01 60 21 0.7 7 42.00 26.85 70 20.6 0.4 4 24.00 15.34 80 20.1 0.5 5 30.00 19.18 90 19.6 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 STDev Average Infiltration Rate (mn²hr) 17.90 1.98 Average Infiltration Rate (mn²hr) 17.90 1.98 Infiltration Data HT20				1				
60 21 0.7 7 42.00 26.85 70 20.6 0.4 4 224.00 15.34 80 20.1 0.5 5 30.00 19.18 90 19.6 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 STDev Average Infiltration Rate (m/hyr) 17.90 1.98 Time (min) Average Infiltration Rate (m/hyr) 17.90 1.98 Infiltration Data HT20								
70								
80 20.1 0.5 5 30.00 19.18 90 19.6 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 1110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120	60	21		0.7	7	42.00	26.85	
90 19.6 0.5 5 30.00 19.18 100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 15TDev Average Infiltration Rate (m²/yr) 17.90 1.98 120 20 120 120 120 120 120 120 120 120	70	20.6		0.4	4	24.00	15.34	
100 19.2 0.4 4 24.00 15.34 110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 STDev Average Infiltration Rate (mn/hr) 28.00 3.10 Average Infiltration Rate (m/hyr) 17.90 1.98 120 28 1120 28 Infiltration Data HT20	80	20.1		0.5	5	30.00	19.18	
110 18.7 0.5 5 30.00 19.18 120 18.2 0.5 5 30.00 19.18 Average Infiltration Rate (mm/hr) 28.00 3.10 Average Infiltration Rate (mm/hr) 17.90 1.98 Time (min) 0 28 120 28 Infiltration Data HT20 28 20.00 Time (min) 28 20.00 28 20.00 20 20 20 20 20 20	90	19.6		0.5	5	30.00	19.18	
120 18.2 0.5 5 30.00 19.18 STDev Average Infiltration Rate (mm/hr) 28.00 3.10 Average Infiltration Rate (mm/hr) 17.90 1.98 Time (min) 0 28 120 28 Infiltration Data HT20 Infiltration Data HT20 28.00 3.10 19.18 STDev 17.90 1.98 Time (min) 19.18 STDev 19.18	100	19.2		0.4	4	24.00	15.34	
120 18.2 0.5 5 30.00 19.18 STDev Average Infiltration Rate (mm/hr) Average Infiltration Rate (mm/hr) 17.90 1.98 Time (min) 0 28 120 28 Infiltration Data HT20 Infiltration Data HT20 28 Infiltration Data HT20 28 Infiltration Data HT20 29 20 00 20 40 60 80 100 120 140	110	18.7		0.5	5	30.00	19.18	
Average Infiltration Rate (mm/hr)					+			
Average Infiltration Rate (mm/hr) 28.00 3.10						30.03		STDev
Average Infiltration Rate (m³/yr) 17.90 1.98 Time (min) 0 28 120 28 Infiltration Data HT20 50.00 25 30.00 0 20 40 60 80 100 120 140					Average Infiltratio	n Data (mm/hr)	29.00	
Infiltration Data HT20 Time (min) 0 28 120 28 120 28 120 120 14								
Infiltration Data HT20 60.00 99 30.00 90 28 Infiltration Data HT20 60.00 0 20 40 60 80 100 120 140					Average illilitation		17.90	1.30
Infiltration Data HT20 60.00 120 28 Infiltration Data HT20 60.00 98 30.00 99 20.00 00.00								
Infiltration Data HT20 60.00 10								
60.00 (E) 50.00 (E) 30.00 (E) 20.00 (E) 10.00 0.00 0 20 40 60 80 100 120 140						120	28	
60.00 (E) 50.00 (E) 30.00 (E) 20.00 (E) 10.00 0.00 0 20 40 60 80 100 120 140			Infiltratio	on Data HT20				
1		60.00						
0.00 0 20 40 60 80 100 120 140								
0.00 0 20 40 60 80 100 120 140		50.00						
0.00 0 20 40 60 80 100 120 140		<u>\</u>	•					
0.00 0 20 40 60 80 100 120 140		€ 40.00		•				
0.00 0 20 40 60 80 100 120 140		e (L	\checkmark					
0.00 0 20 40 60 80 100 120 140		₩ 30.00		\rightarrow	•	•		
0.00 0 20 40 60 80 100 120 140		- E						
0.00 0 20 40 60 80 100 120 140		₩ 20.00 ±		-				
0.00 0 20 40 60 80 100 120 140		 						
0.00 0 20 40 60 80 100 120 140		≦ 10.00						
0 20 40 60 80 100 120 140								
Time (min)		0	20 40		100	120 140		
				Time (min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-23</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				18.2	3.29		
Project Identification:	West Valley Demonstration Project	19.6					
Test Location:	HT-23	14.1					
Soil Type:		17.9					
Tested By:	CI	16.3			Ring area (mm²)	72966	
Date:	6/27/2016	17.7			Ring area (m²)	0.072966	
		23.8					
Flores d Time (min)	In an Dina Dendina (cm)	Toward (now start beingt)	Difference (cm)	Difference (mm)	Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	23						
10	21.1	Topped 24.5	1.9	19	114.00	72.87	
20	22	Topped 24.0	2.5	25	150.00	95.88	
30	21.6	Topped 25.0	2.4	24	144.00	92.04	
40	23.2	Topped 25.0	1.8	18	108.00	69.03	
50	23	Topped 25.5	2	20	120.00	76.70	
60	23.5	Topped 26.0	2	20	120.00	76.70	
70	24.1	Topped 29.1	1.9	19	114.00	72.87	
80	27.5	Topped 28.3	1.6	16	96.00	61.36	
90	26.6	Topped 28.2	1.7	17	102.00	65.20	
100	26.5	Topped 28.2	1.7	17	102.00	65.20	
110	26.7	Topped 28.0	1.5	15	90.00	57.53	
120	26.5		1.5	15	90.00	57.53	
					00.00	0.100	STDev
				Average Infiltration	n Rate (mm/hr)	96.00	6.00
				Average Infiltration		61.36	3.84
				Average illilitation		01.30	3.04
					Time (min)		
					0	96	
					120	96	
		Infiltration Data	HT23				
	160.00						
	14000	•					
	€ 140.00						
	₹ 120.00 -	\rightarrow					
	E B		\ .	_			
	100.00						
	80.00			• •			
	g]						
	₩ 60.00						
	40.00						
	160.00 140.00 140.00 100.00						
	- 20.00						
	0.00						
	0 20	40 60	80 1	00 120	140		
		Time					
			,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-24</u>

Date: 6/29/2016 22.8 Ring 21.5	5.12 g area (mm²) g area (m²) mfiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	72966 0.072966 Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02 38.35	
Test Location: HT-24	g area (m²) Infiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	0.072966 Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02	
Soil Type: 21.8	g area (m²) Infiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	0.072966 Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02	
Tested By: CI, JZ 10.4 Ring Date: 6/29/2016 22.8 Ring 21.5 In Elapsed Time (min) Inner Ring Reading (cm) Topped (new start height) Difference (cm) Difference (mm) 0 24 Topped 24 2 20 20 20 23.1 1.9 19 30 21.8 1.3 13 13 40 20.6 1.2 12 12 50 19.6 18.6 1 1 10	g area (m²) Infiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	0.072966 Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02	
Date: 6/29/2016 22.8 Ring Elapsed Time (min) Inner Ring Reading (cm) Topped (new start height) Difference (cm) Difference (mm) 0 24 Topped 24 2 20 20 23.1 1.9 19 30 21.8 1.3 13 40 20.6 1.2 12 50 19.6 1 10 60 18.6 1 10	g area (m²) Infiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	0.072966 Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02	
21.5 Ir Elapsed Time (min) Inner Ring Reading (cm) Topped (new start height) Difference (cm) Difference (mm)	nfiltration Rate (mm/hr) 120.00 114.00 78.00 72.00 60.00	Infiltration Rate (m³/yr) 76.70 72.87 49.86 46.02	
Columbia	(mm/hr) 120.00 114.00 78.00 72.00 60.00	(m³/yr) 76.70 72.87 49.86 46.02	
Elapsed Time (min) Inner Ring Reading (cm) Topped (new start height) Difference (cm) Difference (mm) 0 24 Topped 24 2 20 20 23.1 1.9 19 30 21.8 1.3 13 40 20.6 1.2 12 50 19.6 1 10 60 18.6 1 10	(mm/hr) 120.00 114.00 78.00 72.00 60.00	(m³/yr) 76.70 72.87 49.86 46.02	
10 22 Topped 24 2 20 20 23.1 1.9 19 30 21.8 1.3 13 40 20.6 1.2 12 50 19.6 1 10 60 18.6 1 10	114.00 78.00 72.00 60.00	72.87 49.86 46.02	
20 23.1 1.9 19 30 21.8 1.3 13 40 20.6 1.2 12 50 19.6 1 10 60 18.6 1 10	114.00 78.00 72.00 60.00	72.87 49.86 46.02	
30 21.8 40 20.6 50 19.6 1 10 60 18.6 1 10	78.00 72.00 60.00	49.86 46.02	
40 20.6 50 19.6 60 18.6 1 10	72.00 60.00	46.02	
50 19.6 60 18.6 1 10	60.00		
60 18.6 1 10		38 35	
	60.00	30.33	
70 18 0.6 6		38.35	
	36.00	23.01	
80 17.2 0.8 8	48.00	30.68	
90 16.4 0.8 8	48.00	30.68	
100 15.8 0.6 6	36.00	23.01	
110 15 0.8 8	48.00	30.68	
120 14.4 0.6 6	36.00	23.01	
			STDev
Average Infiltration Ra	ate (mm/hr)	42.00	6.57
Average Infiltration Ra	ate (m³/yr)	26.85	4.20
	Time (min)		
	0	42	
	120	42	
Infiltration Data HT24			
140.00			
120.00 120			
£ 1000			
E 100.00			
w 80.00			
l sat			
⊑ 60.00			
일 :			
40.00			
⊆ 20.00			
0.00			
0 20 40 60 80 100 120	140		
Time (min)			

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-25A</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				5.5	1.29		
	West Valley Demonstration Project	3.5					
Test Location:	HT-25A	6.8					
Soil Type:		6.4					
Tested By:	JZ, CI	5.1			Ring area (mm²)	72966	
Date:	6/29/2016	5.7			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	25	Toppou (non otali noigin)	Zinioronioo (om)	Zinoronoo (iiii)	(,	(,	
10	18.7	Topped 25.3	6.3	63	378.00	241.61	
20	20.8	Topped 28	4.5	45	270.00	172.58	
30	24.8		3.2	32	192.00	122.72	
40	21.7		3.1	31	186.00	118.89	
50	19	Topped 25	2.7	27	162.00	103.55	
60	22.5		2.5	25	150.00	95.88	
70	20		2.5	25	150.00	95.88	
80	17.5	Topped 25	2.5	25	150.00	95.88	
90	23		2	20	120.00	76.70	
100	20.4		2.6	26	156.00	99.71	
110	18.4		2	20	120.00	76.70	
120	16		2.4	24	144.00	92.04	
120	10		2	2-7	144.00	32.04	STDev
				A Inditenti	D-4- ((1)	444.40	
				Average Infiltration		141.43	15.04
				Average Infiltration		90.40	9.62
					Time (min)		
					0	141.43	
					120	141.43	
		Infiltration Dat	ta HT25Δ				
	400.00	miniciación Da					
]] _						
	350.00 250.00 250.00 250.00 250.00 250.00 250.00 250.00						
	£ 300 00						
	£ 300.00						
	€ 250.00						
	# i						
	200.00	•					
	<u>5</u> 150.00	•	•				
	at a						
	₩ 100.00						
	50.00						
	50.00						
	0.00						
	0 20	40 60	80	100 120	140		
		Tim	e (min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-25B</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				9.6	2.58	3	
	West Valley Demonstration Project	14.5					
Test Location:	HT-25B	9.9					
Soil Type:		8.8					<u> </u>
Tested By:	CI, JZ	7.1			Ring area (mm²)	72966	
Date:	6/30/2016	9.4			Ring area (m²)	0.072966	
		8.1			1 60 4 5 4	1 600 41 10 10	<u> </u>
Elapsed Time (min)	Inner Bine Beeding (cos)	Topped (new start height)	Difference (cm)	Difference (mm)	Infiltration Rate (mm/hr)	Infiltration Rate (m³/yr)	
	Inner Ring Reading (cm)	ropped (new start neight)	Difference (Citi)	Difference (min)	(minvnr)	(m /yr)	
0	28						<u> </u>
10	25.7	Topped 28	2.3	23	138.00	88.21	
20	26.5		1.5	15	90.00	57.53	
30	25.1		1.4	14	84.00	53.69	i
40	24.3		0.8	8	48.00	30.68	
50	23.5		0.8	8	48.00	30.68	
60	22.8		0.7	7	42.00	26.85	
70	22		0.8	8	48.00	30.68	
80	21.4		0.6	6	36.00	23.01	
90	20.9		0.5	5	30.00	19.18	
100	20.4		0.5	5	30.00	19.18	<u> </u>
110	19.9		0.5	5	30.00	19.18	
120	18.4		0.5	5	30.00	19.18	
1-1							STDev
				A	D-4- (/l)	20.00	
				Average Infiltration		38.00	8.49
				Average Infiltration		24.29	5.42
					Time (min)		——
					0	38	
					120	38	i
		Infiltration Data	HT25B				
	160.00						
	_ 140.00						
	≘ 140.00						
	≥ 120.00						
	Ē \						
	a 100.00						
	\$ 80.00	•					
	<u> </u>						
	.5 60.00	\					
	140.00 120						
	<u>=</u> 20.00		•	• • •			
	= 20.00						
	0.00						
	0 20	40 60	80 1	00 120	140		
		Time (
			,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-26</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
D 1 111 115 11				13.1	6.51		
Project Identification: Test Location:	West Valley Demonstration Project HT-26	24.4 8.9					
Soil Type:	H1-26	8.9					
Tested By:	CI, JZ	9.6			Ring area (mm²)	72966	
Date:	6/29/2016	9.5			Ring area (min)	0.072966	
Date.	0/23/2010	17.5			King area (iii)	0.072300	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	27.5	1	, ,	, ,	, ,	, ,,	
10	23.7	Topped 27.5	3.8	38	228.00	145.73	
20	25.5	Topped 26.5	2	20	120.00	76.70	
30	24.4	Topped 29	2.1	21	126.00	80.54	
40	26.5	Topped 28	2.5	25	150.00	95.88	
50	25.5	Topped 26	2.5	25	150.00	95.88	
		T					
60	23	Topped 27	2.5	25	150.00	95.88	
70	24.9	Topped 27.5	2.1	21	126.00	80.54	
80	25	Topped 27	2.5	25	150.00	95.88	
90	24.7		2.3	23	138.00	88.21	
100	22.7		2	20	120.00	76.70	
110	21		1.7	17	102.00	65.20	
120	19.2		1.8	18	108.00	69.03	
							STDev
				Average Infiltration	on Rate (mm/hr)	136.67	13.67
				Average Infiltration	on Rate (m³/yr)	87.35	8.74
					Time (min)		
					0	136.67	
					120	136.67	
		In	filtration Data H	HT26			
	250.00					-	
		•					
	£ 200.00 €					-	
	militration Rate (mm//hr)						
	E 150.00	\ _		_			
	a 130.00			<i></i>		_	
	Ra Ba		•	•			
	S 100.00				•	-	
	ati						
	JE 50.00						
	₹ 50.00					_	
	0.00	 				7.	
	<u> </u>	0 20 40	60 Time (n	80 100) 120 1	.40	

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-29</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				17.1	4.53		
	West Valley Demonstration Project	14.1					
Test Location:	HT-29	14.2					
Soil Type:		14.8					
Tested By:	CI, JZ	24.8			Ring area (mm²)	72966	
Date:	6/28/2016	17.4			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	28.2	Toppou (non otalt noight)	Zimoroneo (em)	2	(,	(,	
15	27.5		0.7	7	28.00	17.90	
30	26.7		0.8	8	32.00	20.45	
45	26		0.7	7	28.00	17.90	
60	25.5		0.5	5	20.00	12.78	
75	25.5		0.5	5	20.00	12.78	
90	24.6		0.5	4	16.00	10.23	
				1			
105	24.3		0.3	3	12.00	7.67	
120	23.9		0.4	4	16.00	10.23	
							STDev
				Average Infiltration		16.80	3.35
				Average Infiltration	on Rate (m³/yr)	10.74	2.14
					Time (min)		
					0	16.8	
					120	16.8	
		Infiltration D	hata UT20				
	35.00	IIIIIIIIIIIII	/ata 11125				
		_					
	⊋ 30.00						
	£ 25.00	•					
	E 25.00						
	9 20.00						
	S 15.00						
	± 10.00			•			
	₩ ₩ ₩						
	25.00 up 15.00 up 15.						
	0.00						
		20 40 60	80	100 12	140		
			ne (min)	100 120	140		
		1111	ne (mm)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-32</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
Double rang minarome	iter rest (12 & 24 Kings)	Con moistare (79)	Average con mon	3.0	0.37		
Project Identification:	West Valley Demonstration Project	3.5					
Test Location:	HT-32	3.1					
Soil Type:		3.1			2		
Tested By:	CI, JZ	2.8			Ring area (mm²)	72966	
Date:	6/30/2016	2.5			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	18.7		 	, ,	, ,	` ' '	
1	14.7	Topped 19	4	40	2400.00	1534.04	
2	16.5	Topped 20	2.5	25	1500.00	958.77	
3	17.5	Topped 20	2.5	25	1500.00	958.77	
		T100					
4	15.1	Topped 20	2.4	24	1440.00	920.42	
5	18.6		1.4	14	840.00	536.91	
7.5	14.1	Topped 20	4.5	45	1080.00	690.32	
10	15.7	Topped 20	4.3	43	1032.00	659.64	
12.5	15	Topped 20	5	50	1200.00	767.02	
15	15.9	Topped 20	4.1	41	984.00	628.96	
17.5	16.4	Topped 20.2	3.6	36	864.00	552.25	
22.5	12.9	Topped 20.1	7.3	73	876.00	559.92	
27.5	13	Topped 20.4	7.1	71	852.00	544.58	
32.5	13.5	Topped 25.1	6.9	69	828.00	529.24	
42.5	10.6	Topped 25.3	14.5	145	870.00	556.09	
52.5	11.5	Topped 25.2	13.8	138	828.00	529.24	
62.5	12		13.2	132	792.00	506.23	
		Topped 25					
72.5	12	Topped 24.4	13	130	780.00	498.56	
82.5	14.9		9.5	95	570.00	364.33	
92.5	8	Topped 20.7	6.9	69	414.00	264.62	
102.5	8.9	Topped 18.2	11.8	118	708.00	452.54	
112.5	7.3	Topped 20.3	10.9	109	654.00	418.03	
122.5	9.8		10.5	105	630.00	402.68	
							STDev
				Average Infiltration	n Rate (mm/hr)	852.67	59.58
				Average Infiltration		545.01	38.08
					Time (min)	5.5.5	
					0	852.67	
					122.5	852.67	
					122.3	852.07	
		Infiltration Data H	IT32				
	3000.00						
	250000						
	2500.00						
	<u></u>						
	3 1500.00 E 2000.00						
	<u> </u>						
	# 1500 co 1						
	ž 1500.00						
	1000.00 Light 1000.00						
	<u> </u>	****					
			* /	•			
	500.00		_				
	1						
	0.00						
	0 20		80 100	120 14	0		
		Time (r	nin)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-34</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				11.5	2.12		
	West Valley Demonstration Project	15.2					
	HT-34	9.9					
Soil Type: Tested By:	KR, CA	10.9 10.9			Ring area (mm²)	72966	
Date:	7/5/2016	10.5			Ring area (min)	0.072966	
Dute.	173/2010	10.0			rang area (m)	0.012300	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	25						
15	24.8		0.2	2	8.00	5.11	
25	24.6		0.2	2	12.00	7.67	
35	24.5		0.1	1	6.00	3.84	
45	24.4		0.1	1	6.00	3.84	
60	24.3		0.1	1	4.00	2.56	
75	24.3		0	0	0.00	0.00	
90	24.2		0.1	1	4.00	2.56	
105	24.2		0	0	0.00	0.00	
120	24.1		0.1	1	4.00	2.56	
							STDev
				Average Infiltration	on Rate (mm/hr)	3.43	2.51
				Average Infiltration	on Rate (m³/yr)	2.19	1.60
					Time (min)		
					0	3.43	
					120	3.43	
		<u> </u>				0.10	
		Infiltration Data	HT34				
	14.00						
	- 12 00						
	12.00 10.00						
	10.00	\					
	<u> </u>						
	⊕ 8.00 •						
	8 600						
	.0 0.00	• •					
	± 4.00			•			
	⊆ 2.00						
	0.00		√ ,,,,,,	V			
	0 20	40 60	80 10	0 120	140		
		Time (r					
			,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Heinz Terrace HT-35</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				16.1	1.70		
	West Valley Demonstration Project	17.2					
Test Location: Soil Type:	HT-35	18.3					
Tested By:	KR, CA	14.9 15.9			Ring area (mm²)	72966	
Date:	7/5/2016	14.1			Ring area (min)	0.072966	
Dutc.	77672010	14.1			rang area (m)	0.072300	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	26.9						
15	21.8		5.1	51	204.00	130.39	
30	21.7		0.1	1	4.00	2.56	
45	21.5		0.2	2	8.00	5.11	
60	21.5		0	0	0.00	0.00	
75	21.5		0	0	0.00	0.00	
90	21.4		0.1	1	4.00	2.56	
105	21.4		0	0	0.00	0.00	
120	21.4		0	0	0.00	0.00	
	<u></u>				0.00	0.00	STDev
				Average Infiltration	n Bata (mm/hr)	3.20	3.35
				Average Infiltration		2.05	2.14
				Average inflitration		2.05	2.14
					Time (min)		
					0	3.2	
					120	3.2	
		Infiltration Da	ta HT35				
	250.00						
	250.00						
	<u>ب</u> 200.00						
	150.00 100						
	, <u> </u>						
	<u>a</u> 150.00						
	\						
	F 100.00	\					
	aj E						
	50.00						
	= :						
	0.00						
	0.00	40 60	80	100 120	140		
			e (min)	120			
			C ()				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-8</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				19.1	5.69		
	West Valley Demonstration Project	9.7					
Test Location: Soil Type:	UHT-8	22.1					
	OL KD OA	18.5 21			Di	72966	
Tested By: Date:	CI, KR, CA 7/11/2016	24.4			Ring area (mm²) Ring area (m²)	0.072966	
Date.	7/11/2010	24.4			King area (iii)	0.072900	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	22						
15	20.6		1.4	14	56.00	35.79	
30	18.7	Topped 23.5	1.9	19	76.00	48.58	
45	21.7		1.8	18	72.00	46.02	
60	19.8		1.9	19	76.00	48.58	
75	19.8		0	0	0.00	0.00	
90	19.8		0	0	0.00	0.00	
105	19.8		0	0	0.00	0.00	
120	19.8		0	0	0.00	0.00	
							STDev
				Average Infiltration	on Rate (mm/hr)	35.00	37.93
				Average Infiltration		22.37	24.25
					Time (min)		
					0	35	
					120	35	
		Infiltration Data	IILITQ				
	80.00	illilitiation Data	ОПІО				
		<u> </u>					
	10.00 10.00						
	560.00						
	<u> </u>	\					
	50.00						
	# 40.00						
	. 30.00						
	<u>E</u> 30.00	\					
	₩ 20.00	\					
	= 10.00		\				
	0.00		1				
	0.00	40 60	80 10	00 120	140		
		Time (r		- 120	1.0		
		711116 (1	,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-11</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				21.4	4.86		
	West Valley Demonstration Project	25.8					
Test Location:	UHT-11	25.5					
Soil Type:		16.9			2		
Tested By:	CI, JZ	15.5			Ring area (mm²)	72966	
Date:	7/6/2016	23.2			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	24.6						
15	24.5		0.1	1	4.00	2.56	
30	24.5		0	0	0.00	0.00	
45	24.5		0	0	0.00	0.00	
60	24.4		0.1	1	4.00	2.56	
75	24.4		0	0	0.00	0.00	
90	24.4		0	0	0.00	0.00	
105	24.4		0	0	0.00	0.00	
120	24.4		0	0	0.00	0.00	
.20					0.00	0.00	STDev
				Average Infiltration	n Pate (mm/hr)	1.33	2.07
				Average Infiltration		0.85	1.32
				Average minitration		0.63	1.32
					Time (min)		
					0	1.33	
					120	1.33	
		Infiltration Data U	IHT11				
	4.50						
	4.00						
	(14.50	\wedge					
	E 3.30	/ \					
	€ 3.00	/ \					
	± 2.50 }	/ \					
	2.00						
	, io 150	/					
	E 1.50						
	₩ 1.00	/					
	⊆ 0.50						
	0.00	/	_				
	0.00	40 60	80 100	0 120	140		
		Time (m		-			
			•				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-4</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				10.3	2.39		
	West Valley Demonstration Project	10.2					
Test Location:	UHT-4	13.4					
Soil Type:	0. 17	6.7			D: (2)	70000	
Tested By:	CI, JZ 7/7/2016	10.7			Ring area (mm²)	72966	
Date:	////2016	10.7			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	19.5						
10	18.4		1.1	11	66.00	42.19	
25	16.9		1.5	15	60.00	38.35	
40	15.7		1.2	12	48.00	30.68	
55	14.3		1.4	14	56.00	35.79	
70	13.2	Topped 18.4	1.1	11	44.00	28.12	
85	17.5		0.9	9	36.00	23.01	
100	16.4		1.1	11	44.00	28.12	
115	15.3		1.1	11	44.00	28.12	
130	14		1.3	13	52.00	33.24	
							STDev
				Average Infiltration	on Rate (mm/hr)	42.00	4.00
				Average Infiltration	on Rate (m³/yr)	26.85	2.56
					Time (min)		
					0	42	
					130	42	
		Infiltration D	ata IIUT/I				
	70.00	IIIIItiation	ata Uni4				
	76.65						
	£ 60.00	•					
	£ 50.00						
	E 30.00	V	_				
	அ 40.00 						
	Ra :		•				
	<u> </u>						
	(a) (a) (b) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c						
	# 1						
	⊆ 10.00						
	0.00						
		20 40 60	80	100 12	0 140		
			ne (min)				
			. ,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-3</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				2.2	0.50		
Project Identification:	West Valley Demonstration Project	2.6					
Test Location:	UHT-3	1.5					
Soil Type:		1.8			- , , 2,		
Tested By:	KR, CA	2.5			Ring area (mm²)	72966	
Date:	7/7/2016	2.5			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	17.3	Toppou (non otal moight)	Zinioronico (cini)	2	()	(,	
10		T			270.00	007.70	
	11.1	Topped 17.8	6.2	62	372.00	237.78	
20	14.1	Topped 17.5	3.7	37	222.00	141.90	
30	13	Topped 18	3.5	35	210.00	134.23	1
40	14.5	Topped 17	3.5	35	210.00	134.23	
50	13.4	Topped 18.5	3.6	36	216.00	138.06	
60	15.4	Topped 19.2	3.1	31	186.00	118.89	
70	15.9	Topped 17.9	3.3	33	198.00	126.56	
80	15	Topped 17	2.9	29	174.00	111.22	
90	14	Topped 16.6	3	30	180.00	115.05	
100	12.7		3.9	39	234.00	149.57	
110	11		1.7	17	102.00	65.20	
120	8.5		2.5	25	150.00	95.88	
120	0.3		2.3	23	130.00	33.00	STDev
				Average Infiltration	n Data (mm/hr)	203.33	20.22
				Average Infiltration		129.97	12.93
					Time (min)		
					0	203.33	
					120	203.33	
		Infiltration Dat	2 IIIIT2				
	400.00	illilitiation bat	a 01113				
	1 1 -						
	350.00 # 300.00 # 250.00 250.00						
	£ 300 00						
	£ 300.00						
	250.00						
	# 200.00		/	<u> </u>			
	€ 200.00	•					
	150.00 Land			<u> </u>			
	ie 100 00						
	₩ 100.00			•			
	50.00						
	0.00						
	0 20	40 60	80	100 120	140		
	20		e (min)	120	1.0		
		111116					

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-5</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				8.4	2.48		
	West Valley Demonstration Project	4.6					
Test Location:	UHT-5	8.6					
Soil Type:	01.150.04	10.6			D: (2)	70000	
Tested By:	CI, KR, CA	10.6 7.7			Ring area (mm²)	72966	
Date:	7/11/2016	1.1			Ring area (m²)	0.072966	
		+			Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0		Toppou (non otal t noight)	Zinoronee (em)	Zincrones (iiii)	(,	(, y. ,	
15	23		0	0.00	0.00	0.00	
30			0	0.00	0.00	0.00	
45	23		0	0.00	0.00	0.00	
60	22.95		0.05	0.50	2.00	1.28	
75	22.9		0.05	0.50	2.00	1.28	
90			0	0.00	0.00	0.00	
105	22.9		0	0.00	0.00	0.00	
120	22.9		0	0.00	0.00	0.00	
							STDev
				Average Infiltration	on Rate (mm/hr)	0.50	0.93
				Average Infiltration		0.32	0.59
					Time (min)		
					0	0.5	
					120	0.5	
					120	0.5	
		Infiltration Da	ta UHT5				
	2.50						
	£ 200 E						
	n filtration (mm/hr) 1.50 (mm/hr) 0.50 (mm/hr)	ľ	٦				
	<u>Ē</u> :		\				
	<u>ੂੰ</u> 1.50						
	Ra :	/	\				
	S 1.00	/					
	afi		\				
	<u></u>		\				
	<u> </u>	/	\				
	000	_ /	7				
	0.00	40 60	80	100 120	140		
	0 20			100 120	140		
		ı ime	(min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Upper Heinz Terrace UHT-8</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				19.1	5.69		
	West Valley Demonstration Project	9.7					
Test Location:	UHT-8	22.1					
Soil Type:		18.5			2		
Tested By:	CI, KR, CA	21			Ring area (mm²)	72966	
Date:	7/11/2016	24.4			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	22				(,	(,	
15	20.6		1.4	14	56.00	35.79	
		T 100 5					
30	18.7	Topped 23.5	1.9	19	76.00	48.58	
45	21.7		1.8	18	72.00	46.02	
60	19.8		1.9	19	76.00	48.58	
75	19.8		0	0	0.00	0.00	
90	19.8		0	0	0.00	0.00	
105	19.8		0	0	0.00	0.00	
120	19.8		0	0	0.00	0.00	
							STDev
				Average Infiltration	n Pate (mm/hr)		0.20.
				Average Infiltration			
				Average minimate	Time (min)		
					0		
					120		
		Infiltration Data	UHT8				
	80.00						
	£ 70.00						
	€ 60.00						
	, È, _{50 00}	\					
	9 50.00						
	40.00						
	5 30 00						
	ati.	\					
	₩ 20.00						
	10.00 10.00		\				
			1				
	0.00 1 20	40 60	80 10	00 120	140		
	0 20			JU 12U	140		
		Time (r	11111)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-2</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				23.9	1.80		
	West Valley Demonstration Project 2	26.7					
Test Location:	FT-2	22.2					
Soil Type:		24.5			-, , 2,		
Tested By:	CI, CA	22.8			Ring area (mm²)	72966	
Date:	7/14/2016	23.1			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	22.2	3,7	, , , , , , , , , , , , , , , , , , , ,	,	, ,	, ,	
15	22.1		0.1	1	4.00	2.56	
30	22		0.1	1	4.00	2.56	
45	22		0	0	0.00	0.00	
60	21.9		0.1	1	4.00	2.56	
				0			
75	21.9		0		0.00	0.00	
90	21.9		0	0	0.00	0.00	
105	21.9		0	0	0.00	0.00	
120	21.9		0	0	0.00	0.00	
135	21.9		0	0	0.00	0.00	
150	21.9		0	0	0.00	0.00	
165	21.9		0	0	0.00	0.00	
180	21.9		0	0	0.00	0.00	
							STDev
				Average Infiltration	on Rate (mm/hr)	1.00	1.81
				Average Infiltration	on Rate (m³/yr)	0.64	1.16
					Time (min)		
					0	1	
					180	1	
		Infiltration Data	FT2				
	4.50						
	4.00	•					
	(L) 3.50 E) 3.00 E) 2.50 E) 2.50 E) 1.50 E) 1.50 E) 1.50	Λ					
	E 200	/ \					
	€ 3.00						
	2.50						
	ž 2.00						
	\ i	/					
	E 1.50						
	₫ 1.00	/					
	0.50						
	0.00						
	0.00	60 80 100	120 140	160 180	200		
	0 20 40	Time (m		100 100	200		
		rime (iii					

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-2B</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil	I Moisture (%)	StDev		
				26.2	2.38		
Project Identification:		26.6					
Test Location:	FT-2	27.5					
Soil Type:		23.6					
Tested By:	JZ	29.3			Ring area (mm²)	72966	
Date:	7/26/2016	24.1			Ring area (m²)	0.072966	
Note:	Re-test of FT-2				Inditention Date	Inditention Date	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	Infiltration Rate (mm/hr)	Infiltration Rate (m³/yr)	
0	23.7	Toppou (non otal t noight)	Zinioronioo (om)	2	(,	(,	
15	23.7		0	0	0.00	0.00	
30	23.7		0	0	0.00	0.00	
45	23.7		0	0	0.00	0.00	-
60	23.7		0	0	0.00	0.00	
90	23.6		0.1	1	2.00	1.28	
120	23.6		0	0	0.00	0.00	
150	23.6		0	0	0.00	0.00	
180	23.5		0.1	1	2.00	1.28	
210	23.5		0	0	0.00	0.00	
240	23.5		0	0	0.00	0.00	
270	23.5		0	0	0.00	0.00	
300	23.4		0.1	1	2.00	1.28	
330	23.4		0	0	0.00	0.00	
360	23.4		0	0	0.00	0.00	
360	23.4		U	U	0.00	0.00	
							
							STDev
				Average Infiltration		0.60	0.97
				Average Infiltration	on Rate (m³/yr)	0.38	0.62
					Time (min)		
					0	0.60	
					360	0.60	
						5.05	
		Infiltration Data	FT2B				
	2.50						
	£ 200						
	militration Rate (mm/hr) 1.00 (mm/hr) 1.00 (mm/hr)	Λ		Λ			
	<u> </u>	/\ /\		/ \			
	<u>e</u> 1.50			/ \			
	- Kat	/ \		/ \			
	5 1.00		/				
	ä;	\ / /	/	\			
	<u></u>						
	≧ 0.50						
	 	\ / /	. /	\			
	0.00	 , . 		· · · · · • · · •			
	0 50	100 150 200	250	300 350	400		
	 	Time (r	nin)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-6</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				27.7	4.77		
	West Valley Demonstration Project 2	29.1					
Test Location:	FT-6	27.9					
Soil Type:	0.04	19.8			D: (2)	7000	
Tested By:	CI, CA 7/14/2016	28.9			Ring area (mm²)	72966 0.072966	
Date:	//14/2016	32.7			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	26.1	ropped (non-etail neight)	2	2	(,	(, 7, 7,	
					4.00	0.50	
15	26		0.1	1	4.00	2.56	
30	25.9		0.1	1	4.00	2.56	
45	25.9		0	0	0.00	0.00	
60	25.9		0	0	0.00	0.00	
75	25.9		0	0	0.00	0.00	
90	25.9		0	0	0.00	0.00	i
105	25.9		0	0	0.00	0.00	
120	25.9		0	0	0.00	0.00	
135	25.9		0	0	0.00	0.00	
150	25.9		0	0	0.00	0.00	
165	25.9		0	0	0.00	0.00	
180	25.9		0	0	0.00	0.00	
100	25.5		U		0.00	0.00	OTD
							STDev
				Average Infiltration		0.67	1.56
				Average Infiltration	on Rate (m³/yr)	0.43	1.00
					Time (min)		
					0	0.67	
					180	0.67	
		Indibuation D	AAA FTC				
		Infiltration D	ata FI6				
	4.50						
	4.00						
	1.50 1.						
	E						
	€ 3.00						
	월 2.50	1					
	200						
	0 2.00						
	변 1.50						
	 1.00 1.00						
	⊆ _{0.50}						
	0.00	 • • • • • • • • • • • • • • • . •	. • · · • · · ·	, , , , , , , , , , , , , , , , , , , 			
	0 20			140 160	180 200		
		Time	e (min)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-12</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi		StDev		
				16.4	3.14		
	West Valley Demonstration Project	18.3					
	FT-12	19.5					
Soil Type:	- · · · -	12.4					
Tested By: Date:	JZ, KR 7/18/2016	18.1 13.7			Ring area (mm²)	72966 0.072966	
Date:	7/18/2016	13.7			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	20						
10	20		0	0	0.00	0.00	
20	20		0	0	0.00	0.00	
30	20		0	0	0.00	0.00	
45	19.9		0.1	1	4.00	2.56	
60	19.8		0.1	1	4.00	2.56	
90	19.8		0	0	0.00	0.00	
120	19.8		0	0	0.00	0.00	
150	19.7		0.1	1	2.00	1.28	
180	19.5		0.2	2	4.00	2.56	
210	19.5		0	0	0.00	0.00	
240	19.4		0.1	1	2.00	1.28	
270	19.2		0.2	2	4.00	2.56	
300	19		0.2	2	4.00	2.56	
330	19		0	0	0.00	0.00	
960	17		2	20	1.90	1.22	
							STDev
				Average Infiltration	n Rate (mm/hr)	2.80	1.79
				Average Infiltration	n Rate (m³/yr)	1.79	1.14
					Time (min)		
					0	2.8	
					330	2.8	
		Infiltration Dat	a, FT12				
	10.0		-				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-13</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soi	Moisture (%)	StDev		
Drainet Identification.	West Valley Demonstration Project	26.0		24.8	2.26		
Test Location:	West Valley Demonstration Project FT-13	26.9 27.6					
Soil Type:	F1-13	23.7					
Tested By:	JZ, CA	22.7			Ring area (mm²)	72966	
Date:	7/27/2016	23.2			Ring area (m²)	0.072966	
					, , ,		
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	19.5						
15	19		0.5	5		0.00	
30	18.8		0.2	2	8.00	5.11	
45	18.8		0	0	0.00	0.00	
60	18.8	Topped 19.5	0	0	0.00	0.00	
75	19.5		0	0	0.00	0.00	
90	19.4		0.1	1	4.00	2.56	
105			0	0		0.00	
105	19.4			1	0.00	0.00	
	19.4		0	0	0.00		
150	19.4		0	0	0.00	0.00	
180	19.3		0.1	1	2.00	1.28	
210	18.3		1	10	20.00	12.78	
240	18.3		0	0	0.00	0.00	
270	18.3		0	0	0.00	0.00	
300	17.6		0.5	5	10.00	6.39	
330	17.5		0.1	1	2.00	1.28	
360	17.5		0	0	0.00	0.00	
					0.00	0.00	STDev
				Average Infiltration	n Pata (mm/hr)	1.56	2.79
				Average Infiltration		0.99	1.78
					Time (min)		
					0	1.56	
					360	1.56	
		Infiltration Data	FT13				
	25.00						
	23.00						
	£ 20.00		·				
	, m	/	/				
	15.00 by 15.		1				
	ate		\				
	<u>&</u>		\				
	5 10.00		1	^			
	ta		\ .	/ \			
	5.00		/				
	=	↑	\ /	/			
	± <i>\</i> /	<u> </u>		🔍			

100

150

200 Time (min) 300

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-14</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				20.0	3.64		
Project Identification:	West Valley Demonstration Project	22					
Test Location:	FT-14	19.2					
Soil Type:		23.5					
Tested By:	CI, JZ	14.1			Ring area (mm²)	72966	
Date:	7/20/2016	21.2			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	21						
15	20.2		0.8	8	32.00	20.45	
30	19.8		0.4	4	16.00	10.23	
45	19.5		0.3	3	12.00	7.67	
60	19.1		0.4	4	16.00	10.23	
75	18.9		0.4	2	8.00	5.11	
90	18.7		0.2	2	8.00	5.11	
105	18.5		0.2	2	8.00	5.11	
120	18.2		0.3	3	12.00	7.67	
150	17.9		0.3	3	6.00	3.84	
180	17.7		0.2	2	4.00	2.56	
210	17.4		0.3	3	6.00	3.84	
240	17.1		0.3	3	6.00	3.84	
270	16.9		0.2	2	4.00	2.56	
300	16.7		0.2	2	4.00	2.56	
330	16.4		0.3	3	6.00	3.84	
360	16.1		0.3	3	6.00	3.84	
1080	9.7		6.4	64	5.33	3.41	
						4.11	STDev
				Average Infiltration	n Pata (mm/hr)	5.25	1.04
				Average Infiltration		3.36	0.66
				Average minuanc		3.30	0.00
					Time (min)		
					0	5.25	
					360	5.25	
		Infiltration Data	FT14				
	35.00						
	30.00						
	ا <u>ا</u> ا						
	≧ 25.00 · \						
	E 20 20 }						
	g 20.00						
	30.00 Lu 25.00 em 20.00 to 15.00 0 15.00						
	\ \ \	•					
	10.00	$\overline{}$					
	<u> </u>	•• \					
	5.00	······································					
		-	_				
	0.00	100 150 300	350	200 250	400		
	0 50	100 150 200	250 ain)	300 350	400		
		Time (n	1111)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-20</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soi	Moisture (%)	StDev		
				47.8	2.28		
	West Valley Demonstration Project	45.8					
est Location:	FT-20	45.7					
oil Type:		49.3			D: (2)	70000	
ested By:	CI 7/26/2016	47.1			Ring area (mm²)	72966 0.072966	
ate:	7/26/2016	50.9			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	21.9						
15	19.9	Topped 24	2	20	80.00	51.13	
30	18		1.9	19	76.00	48.58	
45	22.4		1.6	16	64.00	40.91	
60	20.8		1.6	16	64.00	40.91	
75	19.2		1.6	16	64.00	40.91	
90	17.8	Topped 22	1.4	14	56.00	35.79	
105	20.8	Topped 22	1.2	12	48.00	30.68	
120	19.5		1.3	13	52.00	33.24	
		T		1			
150	17	Topped 20.5	2.5	25	50.00	31.96	
180	18.2		2.3	23	46.00	29.40	
210	15.9	Topped 22.5	2.2	22	44.00	28.12	
240	20.3		2.3	23	46.00	29.40	
270	18.6		1.7	17	34.00	21.73	
300	16.5		2.1	21	42.00	26.85	
330	15		1.5	15	30.00	19.18	
							STDe
				Average Infiltration	on Rate (mm/hr)	42.40	4.98
				Average Infiltration	on Rate (m ³ /yr)	27.10	3.18
				_	Time (min)		
					0	42.40	
					330	42.40	
					000	42.40	
		Infiltration Da	ata FT20				
	90.00						
	80.00						
	9 50.00 9 50.00 1 40.00						
	£ /0.00	• •			_		
	E 60.00						
	g 50.00						
	F		•	•			

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-23</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				10.8	3.09		
	West Valley Demonstration Project	12.4					
Test Location:	FT-23	11.4					
Soil Type:		8.6				ļ	
Tested By:	CI, CA	5.7			Ring area (mm²)	72966	
Date:	7/21/2016	13.2			Ring area (m²)	0.072966	
		13.7			1.6% 5.4	L CH C D	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	Infiltration Rate (mm/hr)	Infiltration Rate (m³/yr)	
		Topped (new start neight)	Difference (cm)	Difference (min)	(11111/111)	(III /yI)	
0	23.9						
15	22.9		1	10	40.00	25.57	
30	22.5		0.4	4	16.00	10.23	
45	21.7		0.8	8	32.00	20.45	
60	21.5		0.2	2	8.00	5.11	
75	20.9		0.6	6	24.00	15.34	
90	20.5		0.4	4	16.00	10.23	
105	20.1		0.4	4		10.23	
					16.00		
120	19.9		0.2	2	8.00	5.11	
150	19.5		0.4	4	8.00	5.11	
180	19		0.5	5	10.00	6.39	
210	18.5		0.5	5	10.00	6.39	
240	18		0.5	5	10.00	6.39	
							STDev
				Average Infiltration	n Rate (mm/hr)	9.20	1.10
				Average Infiltration		5.88	0.70
				Average illilitation		3.00	0.70
					Time (min)	+	
					0	9.20	
					240.00	9.20	
		Infiltration Dat	a, FT23				
	45 1						
	40						
	1 1						
	<u></u> ₹ 35 } \						
	10 Inflitration Rate (mm/hz) 15 25 25 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27						
	<u> </u>						
	일 25 1 / /	•					
	£ 20 1						
	.ē -						
	臣 15						
	<u> </u>			•			
		•—•					
	5						
	0 1	 	 				
	0 50	100 150	200	250	300		
		Time (min)				
			,				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-24</u>

pouble king initiatiomet	er Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil Moi	sture (%)	StDev		
				33.4	5.98		
	West Valley Demonstration Project	35.9					
	FT-24	38.1					
Soil Type:		33.6					
	CI, JZ	23.1			Ring area (mm²)	72966	
Date:	7/19/2016	36.3			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	20.4	roppod (non otal morgin)	2	Zinoroneo (iiii)	()	(,	
15	20.3		0.4		4.00	2.56	
			0.1	1			
30	20.2		0.1	1	4.00	2.56	
45	20.1		0.1	1	4.00	2.56	
60	20		0.1	1	4.00	2.56	
75	19.9		0.1	1	4.00	2.56	
90	19.8		0.1	1	4.00	2.56	
120	19.7		0.1	1	2.00	1.28	
150	19.6		0.1	1	2.00	1.28	
180	19.5		0.1	1	2.00	1.28	
210	19.3		0.2	2	4.00	2.56	
240	19.1		0.2	2	4.00	2.56	
270	19		0.1	1	2.00	1.28	
300	18.9		0.1	1	2.00	1.28	
330	18.8		0.1	1	2.00	1.28	
360	18.7		0.1	1	2.00	1.28	
1020	14		4.7	47	4.27	2.73	
							STDev
				Average Infiltration	n Pata (mm/hr)	2.44	0.56
				Average Infiltration		1.56	0.56
					Time (min)		
					0	2.44	
					360	2.44	
		Infiltration Data	FT24				
		Inititation Data	F124				
	4.50						
	4.00	•	•				
	(L) 3.50						
		\ /	\				
	€ 3.00						
	월 2.50						
	(a) 3.50 E 3.00 9 2.50 1.50 1.50 1.50		7				
	. <u></u> <u></u>		•		_		
	t 1.50						
	₫ 1.00						
	0.50						
	0.00		1	-			
	0 50	100 150 200	250	300 350	400		
		Time (n	nin)				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Tree Farm FT-26</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil	Moisture (%)	StDev		
		(,4		41.1	6.93		
	West Valley Demonstration Project	32.3					
Test Location:	FT-26	46.9				-	
Soil Type:		41.4			. 2		
Tested By:	CI, KR	48.7			Ring area (mm²)	72966	
Date:	7/27/2016	36.3			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	26						
15	25.9		0.1	1	4.00	2.56	
30	25.9		0	0	0.00	0.00	
45	25.9		0	0	0.00	0.00	
60	25.9		0	0	0.00	0.00	
75	25.9		0	0	0.00	0.00	
90	25.9		0	0	0.00	0.00	
105	25.9		0	0	0.00	0.00	
120	25.9		0	0	0.00	0.00	
150	25.9		0	0	0.00	0.00	
180	25.9		0	0	0.00	0.00	
210	25.9		0	0	0.00	0.00	
240	25.9		0	0	0.00	0.00	
270	25.9		0	0	0.00	0.00	
300	25.9		0	0	0.00	0.00	
330	25.8		0.1	1	2.00	1.28	
360	25.8		0	0	0.00	0.00	
							STDev
				Average Infiltration	on Rate (mm/hr)	0.38	1.09
				Average Infiltration	on Rate (m³/yr)	0.24	0.70
					Time (min)		
					0	0.38	
					360	0.38	
		Infiltration Data FT	26				
	5.00						
	-						
	€ 4.00						
	E \						
	E 3 00						
	# 3.00						
	<u> </u>						
				\wedge			
	1.00 (mm/hr) 3.00			/ \			
	<u>=</u> 1.00						
	H - 1			./			
	0.00			/			
		00 150 200	250 30	0 350	400		
		Time (min					
		,	•				

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Abandoned Meander MT-31</u>

Double Ring Infiltrome	ter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil	Moisture (%)	StDev				
				33.5	3.71				
	West Valley Demonstration Project	32.1							
Test Location:	MT-31	36.7							
Soil Type:	17 1/0	33.5			Di2)	70000			
Tested By: Date:	JZ, KR 8/9/2016	28.1 37.2			Ring area (mm²) Ring area (m²)	72966 0.072966			
Date:	0/9/2016	31.2			King area (iii)	0.072900			
					Infiltration Rate	Infiltration Rate			
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)			
0	22.5								
15	22.5		0	0	0.00	0.00			
30	22.5		0	0	0.00	0.00			
45	22.5		0	0	0.00	0.00			
60	22.5		0	0	0.00	0.00			
75	22.5		0	0	0.00	0.00			
90	22.4		0.1	1	4.00	2.56			
105	22.4		0	0	0.00	0.00			
120	22.4		0	0	0.00	0.00			
150	22.3		0.1	1	2.00	1.28			
180	22.3		0	0	0.00	0.00			
210	22.3		0	0	0.00	0.00			
240	22.3		0	0	0.00	0.00			
270	22.2		0.1	1	2.00	1.28			
300	22.2		0	0	0.00	0.00			
				-					
							STDev		
				Average Infiltration	n Pate (mm/hr)	0.89	1.45		
				Average Infiltration		0.57	0.93		
				Average illilitration	Time (min)	0.57	0.53		
					0	0.89			
					300				
					300	0.89			
		Infiltration Dat	a MT31						
	5.00								
	4.00								
	£	Ĭ.							
	<u>ال</u> 3.00	/\							
	£ 3.00								
	at a co	/ \ _		_					
	2.00								
	<u>.</u>			/ \					
	1.00								
	1.00 sate (mm/hr)		\	/ \					
	0.00	• • • • • • • • • • • • • • • • • • •							
	0 50	100 150	200	250 300	350				
	-1.00	T	(min)						
		Time	(min)						

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Abandoned Meander MT-36</u>

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil	Moisture (%)	StDev		
				31.1	8.46		
	West Valley Demonstration Project	45.8					
Test Location:	MT-36	25.8					
Soil Type:		27.7					
Tested By:	CI	25.6			Ring area (mm²)	72966	
Date:	8/8/2016	30.4			Ring area (m²)	0.072966	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	26.4		` ,		, ,	` , ,	
15	26.4		0	0	0.00	0.00	
30	26.3		0.1	1	4.00	2.56	
45	26.3		0	0	0.00	0.00	
60	26.3		0	0	0.00	0.00	
75	26.3		0	0	0.00	0.00	
90	26.3		0	0	0.00	0.00	
105	26.3		0	0	0.00	0.00	
120	26.2		0.1	1	4.00	2.56	
150	26.2		0	0	0.00	0.00	
180	26.2		0	0	0.00	0.00	
210	26		0.2	2	4.00	2.56	
240	26		0	0	0.00	0.00	
270	25.9		0.1	1	2.00	1.28	
300	25.9		0	0	0.00	0.00	
							STDev
				Average Infiltration		1.00	1.71
				Average Infiltration	on Rate (m³/yr)	0.64	1.09
					Time (min)		
					0	1	
					300	1	
		Infiltration Date	a MT36				
	5.00						

Double Ring Infiltrometer Test and Soil Moisture Measurements: <u>Abandoned Meander MT-37</u>

	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average 301	Moisture (%)	StDev		
				45.2	3.44		
	West Valley Demonstration Project	47.5					
Test Location:	MT-37	44.7					
Soil Type:	17 1/2 04	47.5			D: (2)	70000	
Tested By: Date:	JZ, KR, CA 8/8/2016	39.4 46.9			Ring area (mm²) Ring area (m²)	72966 0.072966	
Date:	0/0/2016	40.9			King area (iii)	0.072900	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	27						
15	27		0	0	0.00	0.00	
30	26.9		0.1	1	4.00	2.56	
45	26.9		0	0	0.00	0.00	
60	26.8		0.1	1	4.00	2.56	
75	26.8		0	0	0.00	0.00	
90	26.8		0	0	0.00	0.00	
105	26.8		0	0	0.00	0.00	
120	26.8		0	0	0.00	0.00	
150	26.7		0.1	1	2.00	1.28	
180	26.7		0	0	0.00	0.00	
210	26.7		0	0	0.00	0.00	
240	26.6		0.1	1	2.00	1.28	
270	26.6		0	0	0.00	0.00	
300	26.6		0	0	0.00	0.00	
							STDev
				Average Infiltration	on Rate (mm/hr)	0.86	1.51
				Average Infiltration	on Rate (m³/yr)	0.55	0.97
					Time (min)		
					0	0.86	
					300	0.86	
		Infiltration D	ata MT37				
	5.00	IIIIIII D	ata 141137				
	5.00						
	2	_					
	₹ 4.00	†					
	E 1 /\	/\					
	3.00						
	tration Rate (mm/hr/)	' \					
	5 2.00			•			
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	, , , , , , , , , , , , , , , , , , ,		Λ			

Time (min)

Double Ring Infiltrome	eter Test (12" & 24" Rings)	Soil Moisture (%)	Average Soil	Moisture (%)	StDev		
				14.7	1.32		
Project Identification:	West Valley Demonstration Project	12.4					
Test Location:	UMT-1	15.2					
Soil Type: Tested By:	CI	15.2 15.6			Ring area (mm²)	72966	
Date:	8/11/2016	15.3			Ring area (m²)	0.072966	
Dute.	0/11/2010	10.0			rang area (m)	0.072300	
					Infiltration Rate	Infiltration Rate	
Elapsed Time (min)	Inner Ring Reading (cm)	Topped (new start height)	Difference (cm)	Difference (mm)	(mm/hr)	(m³/yr)	
0	19.5						
15	19		0.5	5	20.00	12.78	
30	18.6		0.4	4	16.00	10.23	
45	18.2		0.4	4	16.00	10.23	
60	17.8		0.4	4	16.00	10.23	
75	17.4		0.4	4	16.00	10.23	
90	16.9		0.5	5	20.00	12.78	
105	16.4		0.5	5	20.00	12.78	
		19.4				15.34	
120	15.8	19.4	0.6	6	24.00		
150	18.9		0.5	5	10.00	6.39	
180	18.1		0.8	8	16.00	10.23	
210	17.1	20	1	10	20.00	12.78	
313	17.2		2.8	28	16.31	10.43	
							STDev
				Average Infiltration	on Rate (mm/hr)	17.53	3.52
				Average Infiltration		11.20	2.25
				Average minimate	Time (min)	11.20	2.20
					0	17.53	
					313	17.53	
		Infiltration	Data UMT1				
	30.00						
	25.00						
	<u> </u>	_ ^					
	€ 20.00	••	_				
	<u>a</u>		. /				
	₹ 15.00	• • • · · · · · · · · · · · · · · · · ·	<u> </u>		•		
	<u> </u>	\					
	₩ 10.00						
	25.00 20.00 et 15.00 uoi ta 10.00 uoi ta 10.00						
	₹ 5.00						
	1						
	0.00						
	0	50 100 15	0 200	250	300 350		
		1	Γime (min)				
			•				

Appendix 3. Summary of jet erosion tests obtained at the following trench locations (numbered by trench): Heinz Terrace (HT), Upper Heinz Terrace (UHT), Tree Farm (FT), Abandoned Meander (MT), and Upper Abandoned Meander (UMT). Tables and plots could include all of the collected data, designated as "raw," or with outliers removed, designate as "modified."

Jet Erosion Test: <u>Heinz Terrace HT-3 (raw)</u>

LOCATION	HT-3 r	SC	OUR DEP	TH READI	NGS
DATE	6/21/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	85.6693376	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	1.605		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.276	0	0	1.329	0.000
		5	5	1.241	0.088
		10	5	1.229	0.100
		15	5	1.220	0.109
		20	5	1.220	0.109
		25	5	1.190	0.139
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	6.93	31.54	37.54
		k _d (cm³/N⋅s)	0.694	1.563	2.453

Jet Erosion Test: <u>Heinz Terrace HT-5 (raw)</u>

LOCATION	HT-5 r	SCOUR DEPTH READINGS					
DATE	6/21/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	82.6378399	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.390	0	0	2.445	0.000		
		5	5	2.415	0.030		
		10	5	2.400	0.045		
		15	5	2.390	0.055		
		20	5	2.391	0.054		
		25	5	2.375	0.070		
		30	5	2.350	0.095		
		35	5	2.350	0.095		
		40	5	2.346	0.099		
		45	5	2.345	0.100		
			SOL	UTIONS			
			Blaisdell	Iterative	Scour Depth		
		$ au_{ m c}$ (Pa)	3.31	19.95	22.28		
		k _d (cm³/N⋅s)	0.466	1.138	1.441		

Jet Erosion Test: <u>Heinz Terrace HT-8 (raw)</u>

LOCATION	HT-8 r		SCOUR DEPTH READINGS					
DATE	6/22/2016	TIME		DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	83.1890213	(MIN))	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835			(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.422	0		0	2.413	0.000		
		4		4	2.305	0.108		
		9		5	2.241	0.172		
		14		5	2.200	0.213		
		19		5	2.234	0.179		
		24		5	2.201	0.212		
		29		5	2.353	0.060		
		34		5	2.345	0.068		
		39		5	2.343	0.070		
		44		5	2.354	0.059		
				SO	LUTIONS			
			L	Blaisdell	Iterative	Scour Depth		
		$ au_{c}$ (Pa)		21.08	0.06	0.00		
		k _d (cm ³ /N	l·s)	1.000	1.850	0.821		

Jet Erosion Test: <u>Heinz Terrace HT-8 (modified)</u>

LOCATION	HT-8 m		SCOUR DE	PTH READINGS	
DATE	6/22/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	83.1890213	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.422	0	0	2.413	0.000
		4	4	2.305	0.108
		9	5	2.241	0.172
		14	5	2.200	0.213
			SO	LUTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	0.25	11.85	11.59
		k _d (cm³/N⋅s)	3.806	8.680	7.935

Jet Erosion Test: <u>Heinz Terrace HT-11 (raw)</u>

LOCATION	HT-11 r	S	COUR DEP	TH READIN	GS
DATE	6/22/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	82.1791782	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.186	0	0	2.649	0.000
		5	5	2.622	0.027
		10	5	2.604	0.045
		20	10	2.591	0.058
		30	10	2.593	0.056
		40	10	2.576	0.073
		50	10	2.575	0.074
			SOLU	ITIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	9.44	84.95	91.56
		k _d (cm³/N⋅s)	0.084	0.300	0.406

Jet Erosion Test: <u>Heinz Terrace HT-11 (modified)</u>

LOCATION	HT-11 m	SC	OUR DEP	TH READI	NGS
DATE	6/22/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	82.1791782	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.186	0	0	2.649	0.000
		5	5	2.622	0.027
		10	5	2.604	0.045
		20	10	2.591	0.058
		40	20	2.576	0.073
		50	10	2.575	0.074
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		$ au_{c}$ (Pa)	7.97	89.71	90.16
		k _d (cm³/N⋅s)	0.084	0.456	0.422

Jet Erosion Test: <u>Heinz Terrace HT-15 (raw)</u>

LOCATION	HT-15 r	S	COUR DEF	TH READIN	GS
DATE	6/22/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	93.292	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.347	0	0	2.488	0.000
		5	5	2.462	0.026
		15	10	2.449	0.039
		25	10	2.446	0.042
		35	10	2.449	0.039
		45	10	2.438	0.050
		55	10	2.436	0.052
		65	10	2.435	0.053
			SOL	UTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	22.46	43.51	43.92
		k _d (cm³/N⋅s)	0.204	1.163	1.483

Jet Erosion Test: <u>Heinz Terrace HT-15 (modified)</u>

LOCATION	HT-15 m	S	COUR DEP	TH READIN	IGS
DATE	6/22/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	93.292	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.347	0	0	2.488	0.000
		5	5	2.462	0.026
		15	10	2.449	0.039
		25	10	2.446	0.042
		45	20	2.438	0.050
		55	10	2.436	0.052
		65	10	2.435	0.053
			SOL	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	21.51	43.69	43.92
		k _d (cm³/N⋅s)	0.199	1.334	1.648

Jet Erosion Test: <u>Heinz Terrace HT-16 (raw)</u>

LOCATION	HT-16 r	SCOUR DEPTH READINGS					
DATE	6/21/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	100.669	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.261	0	0	2.574	0.000		
		5	5	2.571	0.003		
A reasonable solut	tion could not	10	5	2.57	0.004		
be found due to i	insignificant	20	10	2.575	-0.001		
erosio	n	30	10	2.512	0.062		
		40	10	2.55	0.024		
		45	5	2.62	-0.046		
			SOLU	TIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	106.58	72.67	72.68		
		k _d (cm³/N⋅s)	1.000	3.665	0.027		

Jet Erosion Test: <u>Heinz Terrace HT-20 (raw)</u>

LOCATION	HT-20 r	5	SCOUR DEPTH READINGS				
DATE	6/28/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	101	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.392	0	0	2.443	0.000		
		5	5	2.301	0.142		
		10	5	2.292	0.151		
		15	5	2.251	0.192		
		20	5	2.261	0.182		
		25	5	2.271	0.172		
		30	5	2.244	0.199		
		35	5	2.234	0.209		
		40	5	2.230	0.213		
		45	5	2.232	0.211		
		50	5	2.234	0.209		
		60	10	2.22	0.223		
			SOL	UTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	4.37	19.77	20.11		
		k _d (cm³/N⋅s)	1.132	4.201	5.666		

Jet Erosion Test: <u>Heinz Terrace HT-20 (modified)</u>

LOCATION	HT-20 m	SCOUR DEPTH READINGS				
DATE	6/28/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	101	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.392	0	0	2.443	0.000	
		5	5	2.301	0.142	
		10	5	2.292	0.151	
		15	5	2.251	0.192	
		30	15	2.244	0.199	
		35	5	2.234	0.209	
		40	5	2.23	0.213	
		45	5	2.232	0.211	
		60	15	2.22	0.223	
			SOLI	JTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	4.07	19.88	20.11	
		k _d (cm ³ /N·s)	1.138	4.678	6.175	

Jet Erosion Test: <u>Heinz Terrace HT-23 (raw)</u>

LOCATION	HT-23 r	SCOUR DEPTH READINGS				
DATE	6/27/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	91.25	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.368	0	0	2.467	0.000	
		5	5	2.337	0.130	
		10	5	2.310	0.157	
		15	5	2.305	0.162	
		25	10	2.254	0.213	
		35	10	2.267	0.200	
		45	10	2.233	0.234	
		55	10	2.248	0.219	
			SOLI	JTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	2.35	17.40	18.96	
		k _d (cm³/N⋅s)	1.138	3.205	5.061	

Jet Erosion Test: <u>Heinz Terrace HT-23 (modified)</u>

LOCATION	HT-23 m	SCOUR DEPTH READINGS				
DATE	6/27/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	91.25	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.368	0	0	2.467	0.000	
		5	5	2.337	0.130	
		10	5	2.310	0.157	
		25	15	2.254	0.213	
		45	20	2.233	0.234	
			SOLU	JTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	1.54	18.59	18.96	
		k _d (cm³/N·s)	1.330	5.746	5.767	

Jet Erosion Test: <u>Heinz Terrace HT-24 (raw)</u>

LOCATION	HT-24 r		S	COUR DEPT	H READING	S
DATE	6/29/2016		TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	95		(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.663			(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.227		0	0	2.436	0.000
			5	5	2.412	0.024
			10	5	2.404	0.032
			15	5	2.280	0.156
A reasonable solu	tion could not		20	5	2.350	0.086
be found. Bad test	t not included		25	5	2.363	0.073
in stud	ly.		30	5	2.275	0.161
			35	5	2.262	0.174
			40	5	2.261	0.175
			45	5	2.260	0.176
			50	5	2.215	0.221
			55	5	2.256	0.18
			60	5	2.217	0.219
			65	5	2.241	0.195
			70	5	2.235	0.201
				SOLU	TIONS	
				Blaisdell	Iterative	Scour Depth
		$ au_{ extsf{c}}$	(Pa)	0.04	0.06	15.25
		\mathbf{k}_{d}	(cm³/N·s)	0.295	0.295	0.350

Jet Erosion Test: <u>Heinz Terrace HT-25A (raw)</u>

LOCATION	HT-25A r	SCOUR DEPTH READINGS				
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	83.75	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.165	0	0	2.67	0.000	
		5	5	2.416	0.254	
		10	5	2.419	0.251	
		15	5	2.366	0.304	
		20	5	2.366	0.304	
		25	5	2.358	0.312	
		30	5	2.354	0.316	
		35	5	2.354	0.316	
		40	5	2.355	0.315	
		45	5	2.38	0.290	
		50	5	2.39	0.280	
		55	5	2.395	0.275	
			SOL	UTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	11.20	0.06	27.26	
		k _d (cm³/N⋅s)	1.107	0.828	2.425	

Jet Erosion Test: <u>Heinz Terrace HT-25A (modified)</u>

LOCATION	HT-25A m	SCOUR DEPTH READINGS				
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	83.75	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.165	0	0	2.67	0.000	
		5	5	2.416	0.254	
		10	5	2.419	0.251	
		15	5	2.366	0.304	
		20	5	2.366	0.304	
		25	5	2.358	0.312	
		30	5	2.354	0.316	
		35	5	2.354	0.316	
		40	5	2.355	0.315	
			SOL	JTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	3.11	27.01	25.13	
		k _d (cm³/N⋅s)	1.161	5.278	2.329	

Jet Erosion Test: <u>Heinz Terrace HT-25B (raw)</u>

LOCATION	HT-25B r	SCOUR DEPTH READINGS				
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	97.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.248	0	0	2.427	0.000	
		5	5	2.278	0.149	
		10	5	2.267	0.160	
		15	5	2.263	0.164	
		20	5	2.249	0.178	
		25	5	2.247	0.180	
		30	5	2.271	0.156	
		35	5	2.249	0.178	
		40	5	2.236	0.191	
		45	5	2.221	0.206	
		50	5	2.226	0.201	
		55	5	2.229	0.198	
		60	5	2.225	0.202	
			SOL	LUTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	9.41	34.04	35.63	
		k _d (cm ³ /N·s)	0.518	1.457	2.220	

Jet Erosion Test: <u>Heinz Terrace HT-25B (modified)</u>

LOCATION	HT-25B m	SCOUR DEPTH READINGS				
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	97.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.248	0	0	2.427	0.000	
		5	5	2.278	0.149	
		10	5	2.267	0.160	
		15	5	2.263	0.164	
		20	5	2.249	0.178	
		25	5	2.247	0.180	
		35	10	2.249	0.178	
		40	5	2.236	0.191	
		45	5	2.221	0.206	
			SOL	UTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	9.35	33.92	35.63	
		k _d (cm ³ /N·s)	0.655	1.703	2.404	

Jet Erosion Test: <u>Heinz Terrace HT-26 (raw)</u>

LOCATION	HT-26 r	SCOUR DEPTH READINGS					
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	112.25	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.222	0	0	2.453	0.000		
		5	5	2.33	0.123		
		10	5	2.394	0.059		
		15	5	2.32	0.133		
		20	5	2.291	0.162		
		25	5	2.293	0.160		
		30	5	2.295	0.158		
		35	5	2.294	0.159		
		40	5	2.292	0.161		
		45	5	2.287	0.166		
			SOLU	JTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	5.72	55.34	54.74		
		k _d (cm ³ /N·s)	0.323	1.423	1.080		

Jet Erosion Test: <u>Heinz Terrace HT-26 (modified)</u>

LOCATION	HT-26 m	SC	OUR DEP	TH READIN	IGS
DATE	6/29/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	112.25	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.222	0	0	2.453	0.000
		5	5	2.33	0.123
		15	10	2.32	0.133
		20	5	2.291	0.162
		25	5	2.293	0.160
		30	5	2.295	0.158
		35	5	2.294	0.159
		40	5	2.292	0.161
		45	5	2.287	0.166
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	13.09	55.41	56.16
		k _d (cm ³ /N·s)	0.358	1.445	1.615

Jet Erosion Test: <u>Heinz Terrace HT-29 (raw)</u>

LOCATION	HT-29 r	SC	OUR DEP	TH READIN	NGS
DATE	6/28/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	103.25	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.195	0	0	2.479	0.000
		5	5	2.365	0.114
		10	5	2.356	0.123
		15	5	2.355	0.124
		20	5	2.317	0.162
		25	5	2.355	0.124
		30	5	2.294	0.185
		35	5	2.308	0.171
		40	5	2.284	0.195
		45	5	2.28	0.199
		50	5	2.341	0.138
		55	5	2.291	0.188
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	4.95	17.66	50.10
		k _d (cm ³ /N·s)	0.282	0.338	0.858

Jet Erosion Test: <u>Heinz Terrace HT-29 (modified)</u>

LOCATION	HT-29 m	SC	OUR DEP	TH READIN	IGS
DATE	6/28/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	103.25	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.195	0	0	2.479	0.000
		5	5	2.365	0.114
		10	5	2.356	0.123
		20	10	2.317	0.162
		30	10	2.294	0.185
		40	10	2.284	0.195
		45	5	2.28	0.199
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	1.57	47.20	49.17
		k _d (cm³/N⋅s)	0.327	1.051	1.057

Jet Erosion Test: <u>Heinz Terrace HT-32 (raw)</u>

LOCATION	HT-32 r	SC	OUR DEF	TH READ	NGS	
DATE	6/30/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	92.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.265	0	0	2.41	0.000	
		2	2	2.341	0.069	
		6	4	2.324	0.086	
		10	4	2.3	0.110	
		14	4	2.284	0.126	
		18	4	2.311	0.099	
		22	4	2.309	0.101	
		26	4	2.324	0.086	
		30	4	2.306	0.104	
		34	4	2.294	0.116	
		38	4	2.278	0.132	
		42	4	2.266	0.144	
		SOLUTIONS				
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	15.36	34.16	41.65	
		k _d (cm³/N⋅s)	0.470	0.839	1.673	

Jet Erosion Test: <u>Heinz Terrace HT-32 (modified)</u>

LOCATION	HT-32 m	SC	OUR DEP	TH READIN	NGS
DATE	6/30/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	92.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.265	0	0	2.41	0.000
		2	2	2.341	0.069
		6	4	2.324	0.086
		10	4	2.3	0.110
		14	4	2.284	0.126
			SOLU	ITIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	7.46	47.05	51.98
		k _d (cm³/N⋅s)	0.819	2.416	3.304

Jet Erosion Test: <u>Heinz Terrace HT-34 (raw)</u>

LOCATION	HT-34 r	SC	OUR DEP	TH READII	NGS
DATE	6/30/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	102.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.662		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.240	0	0	2.422	0.000
		5	5	2.232	0.190
		10	5	2.225	0.197
		15	5	2.24	0.182
		25	10	2.246	0.176
		35	10	2.255	0.167
		40	5	2.217	0.205
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	42.55	0.06	38.99
		k _d (cm³/N⋅s)	1.000	0.658	2.899

Jet Erosion Test: <u>Heinz Terrace HT-34 (modified)</u>

LOCATION	HT-34 m	SC	OUR DEP	TH READIN	NGS
DATE	6/30/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	102.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.662		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.240	0	0	2.422	0.000
		5	5	2.232	0.190
		10	5	2.225	0.197
		40	30	2.217	0.205
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	40.37	38.99	38.99
		k _d (cm³/N⋅s)	1.000	8.476	3.870

Jet Erosion Test: <u>Heinz Terrace HT-35 (raw)</u>

LOCATION	HT-35 r	SC	OUR DEP	TH READIN	GS
DATE	7/5/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	105.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.199	0	0	2.475	0.000
		5	5	2.317	0.158
		10	5	2.286	0.189
		20	10	2.24	0.235
		27.5	7.5	2.2	0.275
		37.5	10	2.2	0.275
		47.5	10	2.2	0.275
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	0.54	32.14	31.87
		k _d (cm³/N⋅s)	0.626	1.862	1.583

Jet Erosion Test: Heinz Terrace UHT-3 (raw)

LOCATION	UHT-3 r	SCOUR DEPTH READINGS					
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	118	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.335	0	0	2.340	0.000		
		2.5	2.5	2.204	0.136		
		5	2.5	2.217	0.123		
		7.5	2.5	2.204	0.136		
		9	1.5	2.183	0.157		
		11.5	2.5	2.188	0.152		
		14	2.5	2.178	0.162		
		16.5	2.5	2.188	0.152		
		19.5	3	2.178	0.162		
		22	2.5	2.178	0.162		
		27	5	2.178	0.162		
		32	5	2.178	0.162		
		SOLUTIONS					
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	16.92	35.93	36.03		
		k _d (cm³/N⋅s)	1.437	7.635	8.612		

Jet Erosion Test: <u>Heinz Terrace UHT-3 (modified)</u>

LOCATION	UHT-3 m	SCOUR DEPTH READINGS				
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	118	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.335	0	0	2.34	0.000	
		5	5	2.217	0.123	
		9	4	2.183	0.157	
		14	5	2.178	0.162	
		19.5	5.5	2.178	0.162	
		22	2.5	2.178	0.162	
		27	5	2.178	0.162	
		32	5	2.178	0.162	
			SOLU	ITIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	12.71	36.02	35.53	
		k _d (cm³/N⋅s)	1.108	10.945	5.403	

Jet Erosion Test: <u>Heinz Terrace UHT-4 (raw)</u>

LOCATION	UHT-4 r	SCOUR DEPTH READINGS				
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	91.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.356	0	0	2.319	0.000	
		6	6	2.265	0.054	
		11	5	2.266	0.053	
		16	5	2.266	0.053	
		21	5	2.221	0.098	
		26	5	2.219	0.100	
		31	5	2.214	0.105	
		36	5	2.214	0.105	
		41	5	2.214	0.105	
		45	4	2.214	0.105	
		51	6	2.213	0.106	
		SOLUTIONS				
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	4.40	32.21	30.84	
		k _d (cm ³ /N·s)	0.406	3.630	1.934	

Jet Erosion Test: <u>Heinz Terrace UHT-4 (modified)</u>

LOCATION	UHT-4 m	SCOUR DEPTH READINGS					
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	91.5	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.356	0	0	2.319	0.000		
		6	6	2.265	0.054		
		21	15	2.221	0.098		
		26	5	2.219	0.100		
		31	5	2.214	0.105		
		36	5	2.214	0.105		
		41	5	2.214	0.105		
		45	4	2.214	0.105		
		51	6	2.213	0.106		
			SOLU	TIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	6.64	32.23	32.15		
		k _d (cm³/N⋅s)	0.430	3.774	2.947		

Jet Erosion Test: <u>Heinz Terrace UHT-5 (raw)</u>

LOCATION	UHT-5r	S	COUR DEF	TH READI	NGS
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	96.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.675		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.145	0	0	2.53	0.000
		5	5	2.519	0.011
		15	10	2.449	0.081
		25	10	2.438	0.092
		35.12	10.12	2.416	0.114
		40.38	5.26	2.414	0.116
		50.38	10	2.409	0.121
			SOL	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	0.87	40.56	36.29
		k _d (cm³/N⋅s)	0.247	1.122	0.706

Jet Erosion Test: <u>Heinz Terrace UHT-8 (raw)</u>

LOCATION	UHT-8 r	SC	OUR DEP	TH READIN	igs
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	96.79	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.363	0	0	2.472	0.000
		5	5	2.414	0.058
		10	5	2.44	0.032
		17	7	2.444	0.028
		27	10	2.441	0.031
		37	10	2.43	0.042
		47	10	2.434	0.038
			SOLI	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	45.33	0.06	41.13
		k _d (cm³/N⋅s)	1.000	0.187	1.093

Jet Erosion Test: <u>Heinz Terrace UHT-8 (modified)</u>

LOCATION	UHT-8 m	SCOUR DEPTH READINGS					
DATE	7/7/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	96.79	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.363	0	0	2.472	0.000		
		17	7	2.444	0.028		
		27	10	2.441	0.031		
		37	10	2.43	0.042		
			SOLU	JTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	46.34	38.30	44.44		
		τ _c (Pa) k _d (cm³/N·s)	1.000	0.550	2.305		

Jet Erosion Test: <u>Heinz Terrace UHT-9 (raw)</u>

LOCATION	UHT-9 r	SC	OUR DEP	TH READIN	GS
DATE	7/6/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	92.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.303	0	0	2.371	0.000
		5	5	2.372	-0.001
		15	10	2.359	0.012
		25	10	2.356	0.015
		35	10	2.358	0.013
		45	10	2.353	0.018
		55	10	2.35	0.021
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	69.80	63.42	64.43
		k _d (cm³/N⋅s)	1.000	0.296	0.324

Jet Erosion Test: <u>Heinz Terrace UHT-9 (modified)</u>

LOCATION	UHT-9 m	SC	OUR DEP	TH READII	NGS
DATE	7/6/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	92.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.674		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.303	0	0	2.371	0.000
		15	15	2.359	0.012
		25	10	2.356	0.015
		45	20	2.353	0.018
		55	10	2.35	0.021
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	37.91	64.80	66.32
		k _d (cm³/N·s)	0.068	0.400	0.571

Jet Erosion Test: <u>Heinz Terrace UHT-11 (raw)</u>

LOCATION	UHT-11 r	SCOUR DEPTH READINGS					
DATE	7/6/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	111	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.765		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.436	0	0	2.329	0.000		
		5	5	2.325	0.004		
		15	10	2.322	0.007		
		25	10	2.321	0.008		
		30	5	2.321	0.008		
		40	10	2.321	0.008		
		50	10	2.32	0.009		
		60	10	2.318	0.011		
			SOLU	ITIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	37.16	41.41	39.66		
		k _d (cm³/N⋅s)	0.188	0.754	0.298		

Jet Erosion Test: <u>Heinz Terrace UHT-11 (modified)</u>

LOCATION	UHT-11 m	SC	OUR DEPT	TH READIN	GS
DATE	7/6/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	111	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.765		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.436	0	0	2.329	0.000
		5	5	2.325	0.004
		15	10	2.322	0.007
		30	5	2.321	0.008
		50	10	2.32	0.009
		60	10	2.318	0.011
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	36.46	41.52	41.84
		k _d (cm³/N⋅s)	0.172	0.868	1.823

Jet Erosion Test: <u>Heinz Terrace FT-2 (raw)</u>

LOCATION	FT-2r	SCOUR DEPTH READINGS				
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	117.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.836		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.302	0	0	2.534	0.000	
		5	5	2.518	0.016	
		10	5	2.480	0.054	
		15	5	2.460	0.074	
		25	10	2.453	0.081	
		35	10	2.452	0.082	
		45	10	2.449	0.085	
		55	10	2.447	0.087	
		65	10	2.445	0.089	
			SOLU	TIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	7.51	57.61	57.13	
		k _d (cm³/N⋅s)	0.159	1.095	1.015	

Jet Erosion Test: <u>Heinz Terrace FT-2 (modified)</u>

LOCATION	FT-2 m	so	OUR DEF	TH READIN	NGS
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	117.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.836		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.376	0	0	2.460	0.000
		10	10	2.453	0.007
		20	10	2.452	0.008
		30	10	2.449	0.011
		40	10	2.447	0.013
		50	10	2.445	0.015
			SOL	UTIONS	_
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	41.20	56.49	57.28
		k _d (cm³/N⋅s)	0.090	0.474	0.625

Jet Erosion Test: <u>Heinz Terrace FT-6 (raw)</u>

LOCATION	FT-6r	SCOUR DEPTH READINGS				
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	120.625	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.316	0	0	2.519	0.000	
		5	5	2.513	0.006	
		15	10	2.493	0.026	
		25	10	2.480	0.039	
		35	10	2.469	0.050	
		45	10	2.456	0.063	
		55	10	2.453	0.066	
			SOLU	TIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	8.67	44.02	41.89	
		k _d (cm³/N⋅s)	0.102	0.221	0.204	

Jet Erosion Test: Heinz Terrace FT-9 (raw)

LOCATION	FT-9r	SC	OUR DEP	TH READIN	IGS
DATE	7/18/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	132.75	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.834		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.244	0	0	2.590	0.000
		10	10	2.434	0.156
		20	10	2.419	0.171
		30	10	2.419	0.171
		40	10	2.410	0.180
		50	10	2.391	0.199
		60	10	2.371	0.219
		70	10	2.349	0.241
		80	10	2.319	0.271
		90	10	2.292	0.298
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	0.98	14.44	34.04
		k _d (cm³/N⋅s)	0.276	0.358	0.657

Jet Erosion Test: Heinz Terrace FT-12 (raw)

LOCATION	FT- 12 r		SC	OUR DEP	TH READI	NGS
DATE	7/18/2016	TIN	ИE	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	100.5	(M	IN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.833			(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.266	()	0	2.567	0.000
		Į	5	5	2.479	0.088
		1	0	5	2.466	0.101
		1	5	5	2.465	0.102
		2	5	10	2.465	0.102
		3	5	10	2.464	0.103
		4	5	10	2.460	0.107
		5	5	10	2.458	0.109
		6	5	10	2.454	0.113
		7	5	10	2.451	0.116
		8	5	10	2.448	0.119
		9	5	10	2.446	0.121
		10	05	10	2.444	0.123
		11	15	10	2.443	0.124
				Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	24.74	49.47	49.77
		k _d (cm	n³/N·s)	0.201	0.700	1.253

Jet Erosion Test: <u>Heinz Terrace FT-12 (modified)</u>

LOCATION	FT-12 m	SCOUR DEPTH READINGS						
DATE	7/18/2016	TIME	DIFF	PT GAGE	MAXIMUM			
HEAD (IN)	100.5	(MIN)	TIME	READING	DEPTH OF			
PT GAGE H (FT)	2.833		(MIN)	(FT)	SCOUR (FT)			
NOZZLE H (FT)	0.373	0	0	2.46	0.000			
		10	10	2.458	0.002			
		20	10	2.454	0.006			
		30	10	2.451	0.009			
		40	10	2.448	0.012			
		50	10	2.446	0.014			
		60	10	2.444	0.016			
		70	10	2.443	0.017			
			Blaisdell	Iterative	Scour Depth			
		τ _c (Pa)	28.41	45.84	43.98			
		k _d (cm ³ /N·s)	0.057	0.217	0.165			

Jet Erosion Test: <u>Heinz Terrace FT-13 (raw)</u>

LOCATION	FT- 13 r	SCOUR DEPTH READINGS			
DATE	7/26/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	126.5	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.218	0	0	2.617	0.000
		5	5	2.457	0.160
		10	5	2.452	0.165
		15	5	2.437	0.180
		20	5	2.436	0.181
		30	10	2.424	0.193
		40	10	2.420	0.197
		50	10	2.415	0.202
		70	20	2.414	0.203
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	15.54	53.68	53.76
		k _d (cm ³ /N·s)	0.377	1.670	1.740

Jet Erosion Test: <u>Heinz Terrace FT-14 (raw)</u>

LOCATION	FT- 14 r	S	COUR DEF	TH READI	NGS		
DATE	7/18/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	91.5	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.229	0	0	2.606	0.000		
		5	5	2.487	0.119		
		10	5	2.470	0.136		
		15	5	2.458	0.148		
		20	5	2.449	0.157		
		25	5	2.443	0.163		
		30	5	2.440	0.166		
		40	10	2.428	0.178		
		50	10	2.419	0.187		
		60	10	2.415	0.191		
		70	10	2.409	0.197		
		80	10	2.406	0.2		
		90	10	2.403	0.203		
		100	10	2.398	0.208		
		110	10	2.395	0.211		
		120	10	2.391	0.215		
			SOLUTIONS				
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	4.18	34.23	34.96		
		k _d (cm ³ /N·s)	0.250	0.819	1.242		

Jet Erosion Test: <u>Heinz Terrace FT-14 (modified)</u>

LOCATION	FT- 14 m	SC	OUR DEP	TH READIN	IGS			
DATE	7/18/2016	TIME	DIFF	PT GAGE	MAXIMUM			
HEAD (IN)	91.5	(MIN)	TIME	READING	DEPTH OF			
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)			
NOZZLE H (FT)	0.348	0	0	2.487	0.000			
		10	5	2.47	0.017			
		15	5	2.458	0.029			
		20	5	2.449	0.038			
		25	5	2.443	0.044			
		30	5	2.44	0.047			
		40	10	2.428	0.059			
		50	10	2.419	0.068			
		60	10	2.415	0.072			
		70	10	2.409	0.078			
		80	10	2.406	0.081			
		90	10	2.403	0.084			
		100	10	2.398	0.089			
		110	10	2.395	0.092			
		120	10	2.391	0.096			
			SOLUTIONS					
			Blaisdell	Iterative	Scour Depth			
		τ _c (Pa)	3.55	32.58	33.07			
		k _d (cm³/N⋅s)	0.122	0.476	0.503			

Jet Erosion Test: <u>Heinz Terrace FT-15 (raw)</u>

LOCATION	FT- 15 r	SCOUR DEPTH READINGS					
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	127.125	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.833		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.263	0	0	2.570	0.000		
		12	12	2.550	0.020		
Insignificant erosio	n occurred-	22	10	2.550	0.020		
test not included	l in study	32	10	2.550	0.020		
		42	10	2.550	0.020		
		52	10	2.550	0.020		
		62	10	2.550	0.020		
		70	8	2.528	0.042		
		80	10	2.520	0.050		
			SOLU	JTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	40.96	0.06	0.00		
		k _d (cm³/N⋅s)	0.038	0.025	0.023		

Jet Erosion Test: <u>Heinz Terrace FT-15 (modified)</u>

LOCATION	FT-15 m	SCOUR DEPTH READINGS					
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	127.125	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.833		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.263	0	0	2.570	0.000		
		12	12	2.550	0.020		
		22	10	2.550	0.020		
Insignificant erosi	on occurred-	32	10	2.550	0.020		
test not include	ed in study	42	10	2.550	0.020		
		52	10	2.550	0.020		
		62	10	2.550	0.020		
			SOLU	JTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	119.17	1.01	119.55		
		k _d (cm³/N⋅s)	0.604	0.022	0.897		

Jet Erosion Test: <u>Heinz Terrace FT-16 (raw)</u>

LOCATION	FT- 16 r	SCOUR DEPTH READINGS					
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	104.75	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.180	0	0	2.655	0.000		
		5	5	2.449	0.206		
		10	5	2.427	0.228		
		15	5	2.391	0.264		
		20	5	2.384	0.271		
		25	5	2.371	0.284		
		30	5	2.360	0.295		
		40	10	2.359	0.296		
		50	10	2.340	0.315		
		60	10	2.345	0.310		
			SO	LUTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	1.65	31.09	31.50		
		k _d (cm³/N⋅s)	0.651	1.983	1.777		

Jet Erosion Test: <u>Heinz Terrace FT-16 (modified)</u>

LOCATION	FT- 16 m	9	COUR DEPT	H READIN	GS
DATE	7/14/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	104.75	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.180	0	0	2.655	0.000
		5	5	2.449	0.206
		15	10	2.391	0.264
		20	5	2.384	0.271
		25	5	2.371	0.284
		30	5	2.360	0.295
		50	20	2.340	0.315
		60	10	2.345	0.310
			SOLU	TIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	1.81	31.21	31.35
		k _d (cm ³ /N·s)	0.648	2.072	1.798

Jet Erosion Test: <u>Heinz Terrace FT-20 (raw)</u>

LOCATION	FT- 20 r	SCOUR DEPTH READINGS						
DATE	7/21/2016	TIME	DIFF	PT GAGE	MAXIMUM			
HEAD (IN)	104.625	(MIN)	TIME	READING	DEPTH OF			
PT GAGE H (FT)	2.830		(MIN)	(FT)	SCOUR (FT)			
NOZZLE H (FT)	0.210	0	0	2.620	0.000			
		5	5	2.460	0.160			
		10	5	2.445	0.175			
		15	5	2.430	0.190			
		20	5	2.420	0.200			
		25	5	2.419	0.201			
		30	5	2.416	0.204			
		45	15	2.411	0.209			
		60	15	2.410	0.210			
		83	23	2.406	0.214			
		90	7	2.400	0.220			
			SOL	UTIONS				
			Blaisdell	Iterative	Scour Depth			
		τ _c (Pa)	11.44	42.40	42.62			
		k _d (cm ³ /N·s)	0.372	1.274	1.826			

Jet Erosion Test: Heinz Terrace FT-22 (raw)

LOCATION	FT- 22 r	SCOUR DEPTH READINGS				
DATE	7/21/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	93	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.268	0	0	2.567	0.000	
		5	5	2.535	0.032	
		10	5	2.530	0.037	
		15	5	2.528	0.039	
		20	5	2.524	0.043	
		25	5	2.520	0.047	
		30	5	2.519	0.048	
		45	15	2.490	0.077	
		60	15	2.448	0.119	
		90	30	2.484	0.083	
		120	30	2.477	0.090	
			SOL	UTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	7.86	0.06	46.77	
		k _d (cm ³ /N·s)	0.109	0.096	0.341	

Jet Erosion Test: <u>Heinz Terrace FT-22 (modified)</u>

LOCATION	FT- 22 m	SCOUR DEPTH READINGS						
DATE	7/21/2016	TIME	DIFF	PTGAGE	MAXIMUM			
HEAD (IN)	93	(MIN)	TIME	READING	DEPTH OF			
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)			
NOZZLE H (FT)	0.268	0	0	2.567	0.000			
		5	5	2.535	0.032			
		10	5	2.530	0.037			
		15	5	2.528	0.039			
		20	5	2.524	0.043			
		25	5	2.520	0.047			
		30	5	2.519	0.048			
			SOLU	JTIONS				
			Blaisdell	Iterative	Scour Depth			
		τ _c (Pa)	32.96	69.31	70.15			
		k _d (cm ³ /N·s)	0.224	1.187	1.462			

Jet Erosion Test: <u>Heinz Terrace FT-23 (raw)</u>

LOCATION	FT- 23 r	SCOUR DEPTH READINGS				
DATE	7/20/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	108	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.274	0	0	2.561	0.000	
		5	5	2.460	0.101	
		10	5	2.440	0.121	
		15	5	2.438	0.123	
		20	5	2.421	0.140	
		25	5	2.410	0.151	
		30	5	2.403	0.158	
		45	15	2.425	0.136	
		60	15	2.399	0.162	
		75	15	2.399	0.162	
		90	15	2.399	0.162	
		SOLUTIONS				
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	10.46	47.86	42.79	
		k _d (cm³/N⋅s)	0.321	1.792	1.943	

Jet Erosion Test: Heinz Terrace FT-24 (raw)

LOCATION	FT- 24 r	SC	OUR DEF	TH READI	NGS
DATE	7/19/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	97	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.225	0	0	2.610	0.000
		5	5	2.383	0.227
		10	5	2.342	0.268
		15	5	2.318	0.292
		20	5	2.305	0.305
		25	5	2.309	0.301
		30	5	2.305	0.305
		35	5	2.204	0.406
		40	5	2.204	0.406
		45	5	2.204	0.406
		55	5	2.204	0.406
			SOL	UTIONS	
			Blaisdell	Iterative	Scour Depth
		τ _c (Pa)	0.24	11.15	16.07
		k _d (cm³/N⋅s)	1.345	2.155	2.764

Jet Erosion Test: <u>Heinz Terrace FT-24 (modified)</u>

LOCATION	FT- 24 m	SCOUR DEPTH READINGS					
DATE	7/19/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	97	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.225	0	0	2.610	0.000		
		5	5	2.383	0.227		
		10	5	2.342	0.268		
		15	5	2.318	0.292		
		20	5	2.305	0.305		
		30	10	2.305	0.305		
		35	5	2.204	0.406		
		40	5	2.204	0.406		
		45	5	2.204	0.406		
		55	5	2.204	0.406		
		SOLUTIONS					
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	0.21	12.47	16.43		
		k _d (cm³/N⋅s)	1.350	2.390	2.853		

Jet Erosion Test: <u>Heinz Terrace FT-25 (raw)</u>

LOCATION	FT-25 r	SCOUR DEPTH READINGS				
DATE	7/19/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	105.5	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.220	0	0	2.615	0.000	
		5	5	2.500	0.115	
		10	5	2.450	0.165	
		15	5	2.440	0.175	
		20	5	2.439	0.176	
		25	5	2.416	0.199	
		30	5	2.430	0.185	
		35	5	2.419	0.196	
		40	5	2.404	0.211	
		45	5	2.396	0.219	
		50	5	2.395	0.220	
		55	5	2.393	0.222	
		61	6	2.389	0.226	
			SOL	LUTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	1.98	38.52	39.95	
		k _d (cm³/N⋅s)	0.386	1.283	1.470	

Jet Erosion Test: <u>Heinz Terrace FT-25 (modified)</u>

LOCATION	FT-25 m		SCOU	R DEF	TH READIN	NGS
DATE	7/19/2016	TIM	IE D	IFF	PT GAGE	MAXIMUM
HEAD (IN)	105.5	IIM)	N) TI	ME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(N	1IN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.220	0		0	2.615	0.000
		5		5	2.5	0.115
		10)	5	2.45	0.165
		15	5	5	2.44	0.175
		20)	5	2.439	0.176
		30) '	10	2.43	0.185
		35	5	5	2.419	0.196
		40)	5	2.404	0.211
		45	5	5	2.396	0.219
		50)	5	2.395	0.220
		55	5	5	2.393	0.222
		61		6	2.389	0.226
				SOL	UTIONS	
			Bla	isdell	Iterative	Scour Depth
		τ _c (Pa)	1	.98	38.29	39.95
		k _d (cm ³	/N·s) 0.	375	1.231	1.431

Jet Erosion Test: Heinz Terrace FT-26 (raw)

LOCATION	FT-26 r	SCOUR DEPTH READINGS				
DATE	7/26/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	92.75	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.834		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.257	0	0	2.577	0.000	
		5	5	2.557	0.020	
		10	5	2.553	0.024	
		20	10	2.550	0.027	
		30	10	2.547	0.030	
		40	10	2.545	0.032	
		55	15	2.543	0.034	
		70	15	2.541	0.036	
		85	15	2.538	0.039	
			SOLU	ITIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	45.66	78.94	79.73	
		k _d (cm³/N⋅s)	0.075	0.337	0.502	

Jet Erosion Test: <u>Heinz Terrace FT-26 (modified)</u>

LOCATION	FT-26 m	SCOUR DEPTH READINGS					
DATE	7/26/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	92.75	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.834		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.277	0	0	2.557	0.000		
		10	10	2.553	0.004		
		20	10	2.550	0.007		
		30	10	2.547	0.010		
		40	10	2.545	0.012		
		55	15	2.543	0.014		
		70	15	2.541	0.016		
		85	15	2.538	0.019		
			SOLU	TIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	42.47	74.95	76.88		
		k _d (cm³/N⋅s)	0.029	0.121	0.150		

Jet Erosion Test: <u>Heinz Terrace MT-31 (raw)</u>

LOCATION	MT-31 r	SCOUR DEPTH READINGS					
DATE	8/9/2016	TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	103.75	(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.828		(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.294	0	0	2.534	0.000		
		5	5	2.464	0.070		
		10	5	2.434	0.100		
		15	5	2.430	0.104		
		30	15	2.406	0.128		
		45	15	2.400	0.134		
		60	15	2.398	0.136		
		90	30	2.390	0.144		
		120	30	2.382	0.152		
			SOLI	JTIONS			
			Blaisdell	Iterative	Scour Depth		
		τ _c (Pa)	7.55	38.96	39.28		
		k _d (cm³/N⋅s)	0.223	0.937	1.395		

Jet Erosion Test: <u>Heinz Terrace MT-36 (raw)</u>

LOCATION	MT-36 r		SCOUR DEPTH READINGS					
DATE	8/8/2016		TIME	DIFF	PT GAGE	MAXIMUM		
HEAD (IN)	106		(MIN)	TIME	READING	DEPTH OF		
PT GAGE H (FT)	2.835			(MIN)	(FT)	SCOUR (FT)		
NOZZLE H (FT)	0.292		0	0	2.543	0.000		
			5	5	2.509	0.034		
			10	5	2.490	0.053		
			15	5	2.485	0.058		
			30	15	2.476	0.067		
			45	15	2.466	0.077		
			60	15	2.462	0.081		
			90	30	2.459	0.084		
			120	30	2.444	0.099		
				SOL	JTIONS			
				Blaisdell	Iterative	Scour Depth		
		τ	; _c (Pa)	13.63	50.70	52.22		
		k	x _d (cm³/N⋅s)	0.112	0.409	0.599		

Jet Erosion Test: <u>Heinz Terrace MT-37 (raw)</u>

LOCATION	MT-37 r	SCOUR DEPTH READINGS				
DATE	8/8/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	107.25	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.312	0	0	2.523	0.000	
		5	5	2.468	0.055	
		10	5	2.460	0.063	
		15	5	2.455	0.068	
		30	15	2.455	0.068	
		45	15	2.438	0.085	
		60	15	2.425	0.098	
		90	30	2.420	0.103	
		120	30	2.402	0.121	
			SOL	UTIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	12.72	41.18	43.08	
		k _d (cm³/N⋅s)	0.156	0.483	0.693	

Jet Erosion Test: <u>Heinz Terrace MT-37 (modified)</u>

LOCATION	MT-37 m	,	SCOUR DEP	TH READIN	GS
DATE	8/8/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	107.25	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.835		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.312	0	0	2.523	0.000
		5	5	2.468	0.055
		10	5	2.460	0.063
		15	5	2.455	0.068
		45	30	2.438	0.085
		60	15	2.425	0.098
		90	30	2.420	0.103
		120	30	2.402	0.121
			SOLU	JTIONS	
			Blaisdell	Iterative	Scour Depth
		$τ_c$ (Pa)	12.35	41.20	43.08
		k _d (cm³/N⋅s)	0.152	0.485	0.722

Jet Erosion Test: <u>Heinz Terrace UMT-1 (raw)</u>

LOCATION	UMT-1 r	SC	OUR DEPT	H READIN	GS
DATE	8/10/2016	TIME	DIFF	PT GAGE	MAXIMUM
HEAD (IN)	85	(MIN)	TIME	READING	DEPTH OF
PT GAGE H (FT)	2.827		(MIN)	(FT)	SCOUR (FT)
NOZZLE H (FT)	0.245	0	0	2.582	0.000
		5	5	2.540	0.042
		10	5	2.436	0.146
		15	5	2.424	0.158
		30	15	2.449	0.133
		45	15	2.441	0.141
		51	6	2.400	0.182
		60	9	2.406	0.176
		90	30	2.428	0.154
		120	30	2.417	0.165
			SOLU [*]	TIONS	
			Blaisdell	Iterative	Scour Depth
		$ au_{ m c}$ (Pa)	4.17	19.29	35.11
		k _d (cm³/N⋅s)	0.272	0.396	1.164

Jet Erosion Test: <u>Heinz Terrace UMT-1 (modified)</u>

LOCATION	UMT-1 m	SCOUR DEPTH READINGS				
DATE	8/10/2016	TIME	DIFF	PT GAGE	MAXIMUM	
HEAD (IN)	85	(MIN)	TIME	READING	DEPTH OF	
PT GAGE H (FT)	2.827		(MIN)	(FT)	SCOUR (FT)	
NOZZLE H (FT)	0.287	0	0	2.540	0.042	
		10	10	2.436	0.146	
		15	5	2.424	0.158	
		51	36	2.400	0.182	
			SOLU	TIONS		
			Blaisdell	Iterative	Scour Depth	
		τ _c (Pa)	7.93	34.99	35.11	
		k _d (cm³/N⋅s)	0.501	2.884	2.801	

Appendix 4. Summary of grain size statistics obtained in stream channels near the WVDP. These are listed in the order in which they were collected (GS-1, GS-2, etc.), their GPS locations are provided, and the percentiles of the distribution are tabulated (D_{10} , D_{16} , D_{50} , D_{84} , D_{90} , and D_{95} ; D_{50} refers to the grain size D in which 50% of the sediment population is finer than this size.)

Pebble Count: <u>GS-1</u>

Site Name:	Rock Springs F	Rd., ~1 mi S of W	/VDP, east side	of creek	
	42°26'18.0"N 78	3°39'04.9"W			
Date:	6/16/2016				
		Size (mm)	Total #	% in Range	% Finer
Sand and Silt	<		0	0%	0%
	2 -		3	4%	4%
Orovolo	5 -		6	7%	11%
Gravels	9 -		14	17%	28% 52%
	17 - 33 -		20 18	24% 22%	74%
	65 -		5	6%	80%
Cobbles	91 -		6	7%	88%
2300.00	129 -		6	7%	95%
	181 -		2	2%	98%
Boulders	256 -		2	2%	100%
		TOTALS:	82		
Domtials (Ciza Diatrib	ution			
Particle	Size Distrib	ution		Histogram	
4000/			30% -		
100%					
90%	 	-{ - - -	<u></u>		
000/		⁷	25% 🛨		
80%					
70%	Ш 	- 	20% +		
600/	Ш ІІИШ		98		
60% 50%			in Range		
	 	- 	<u>.</u> ⊆ 15% 		
% 40%			%]		
40%			10% +		
30%	 	- 			
20%			1		
20%			5% 🛨		
10%	// 	- 	1		
0%			0%		
1	10 10	0 1000	2 4	8 16 32 64 90	128 180 255 512
	Particle Size [mm]		Sediment Size [m	ım]
	D ₁₀	7.5	mm		
	D ₁₆	10.4	mm		
	D ₅₀		mm		
	D ₈₄	108.2	mm		
	D ₉₀	143.6	mm		
	D ₉₅	179.1	mm		

Site Name: Rock Springs Rd., ~1 mi S of WVDP, west side of creek

Location: 42°26′17.5″N 78°39′08.3″W

Date: 6/16/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	1	1%	1%
Gravels	9 - 16	5	4%	5%
	17 - 32	21	18%	23%
	33 - 64	38	32%	55%
	65 - 90	19	16%	71%
Cobbles	91 - 128	11	9%	81%
	129 - 180	8	7%	87%
	181 - 255	8	7%	94%
Boulders	256 - 512	7	6%	100%
	TOTALS:	118		

Particle Size Distribution

Histogram

D ₁₀	20.4	mm	
D ₁₆	25.8	mm	
D ₅₀	58.9	mm	
D ₈₄	154.8	mm	
D ₉₀	210.0	mm	
D ₉₅	295.4	mm	

Site Name: On 240, just south of Thomas Corners Rd., west side, ~100 m from road

Location: 42°28'32.4"N 78°38'14.3"W

	Particle Size (mm)		Total #	% in Range	% Finer
Sand and Silt	< 2		0	0%	0%
	2 - 4		0	0%	0%
	5 - 8		8	6%	6%
Gravels	9 - 16		6	5%	11%
	17 - 32		26	20%	31%
	33 - 64		36	28%	58%
	65 - 90		15	12%	70%
Cobbles	91 - 128		8	6%	76%
	129 - 180		18	14%	90%
	181 - 255		8	6%	96%
Boulders	256 - 512		5	4%	100%
		TOTALS:	130		

D ₁₀	14.7	mm
D ₁₆	20.2	mm
D ₅₀	54.2	mm
D ₈₄	157.5	mm
D ₉₀	180.0	mm
D ₉₅	240.9	mm

Site Name: On 240, just north of bend, west side

Location: 42°27'54.5"N 78°38'10.9"W

Date: 6/16/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	4	3%	4%
Gravels	9 - 16	16	12%	16%
	17 - 32	29	22%	38%
	33 - 64	31	24%	62%
	65 - 90	19	15%	77%
Cobbles	91 - 128	13	10%	87%
	129 - 180	8	6%	93%
	181 - 255	5	4%	97%
Boulders	256 - 512	4	3%	100%
	TOTALS:	130		

10

50%

40%

30% 20%

10%

0%

1

D ₁₀	12.0	mm	
D ₁₆	15.9	mm	
D ₅₀	47.5	mm	
D ₈₄	116.9	mm	
D ₉₀	154.0	mm	
D ₉₅	217.5	mm	

100

Particle Size [mm]

Pebble Count: <u>GS-5</u>

Site Name: On 240, upstream of road culvert Location: 42°27'27.2"N 78°37'27.3"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	2	2%	2%
	5 - 8	4	3%	5%
Gravels	9 - 16	20	17%	22%
	17 - 32	26	22%	44%
	33 - 64	20	17%	61%
	65 - 90	16	13%	74%
Cobbles	91 - 128	13	11%	85%
	129 - 180	10	8%	93%
	181 - 255	5	4%	97%
Boulders	256 - 512	3	3%	100%
	TOTALS:	119		

D ₁₀	10.4	mm	
D ₁₆	13.2	mm	
D ₅₀	44.0	mm	
D ₈₄	125.0	mm	
D ₉₀	159.7	mm	
D ₉₅	210.8	mm	

Site Name: On 240 further downstream, ~1 mi

Location: 42°27′25.7″N 78°37′28.1″W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	7	6%	6%
Gravels	9 - 16	26	21%	27%
	17 - 32	25	20%	48%
	33 - 64	32	26%	74%
	65 - 90	13	11%	84%
Cobbles	91 - 128	13	11%	95%
	129 - 180	4	3%	98%
	181 - 255	1	1%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	122		

D ₁₀	9.6	mm	
D ₁₆	11.9	mm	
D ₅₀	35.0	mm	
D ₈₄	89.0	mm	
D ₉₀	109.9	mm	
D ₉₅	127.7	mm	

Site Name: GS-7, Intersection of Goose Creek and 240

Location: 42°26'30.2"N 78°36'53.3"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	1	1%	2%
Gravels	9 - 16	7	6%	8%
	17 - 32	27	23%	31%
	33 - 64	31	27%	58%
	65 - 90	14	12%	70%
Cobbles	91 - 128	10	9%	78%
	129 - 180	11	9%	88%
	181 - 255	7	6%	94%
Boulders	256 - 512	7	6%	100%
	TOTALS:	116		

D ₁₀	17.5	mm	
D ₁₆	21.7	mm	
D ₅₀	54.7	mm	
D ₈₄	158.4	mm	
D ₉₀	205.7	mm	
D ₉₅	299.1	mm	

Site Name: Thornwood Rd., near West Vally, southside of creek

Location: 42°25'47.2"N 78°38'04.3"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	0	0%	1%
	5 - 8	2	2%	2%
Gravels	9 - 16	8	6%	9%
	17 - 32	28	22%	31%
	33 - 64	40	32%	63%
	65 - 90	15	12%	75%
Cobbles	91 - 128	14	11%	86%
	129 - 180	12	10%	96%
	181 - 255	2	2%	98%
Boulders	256 - 512	3	2%	100%
	TOTALS:	125		

D ₁₀	16.9	mm	
D ₁₆	21.1	mm	
D ₅₀	50.8	mm	
D ₈₄	119.9	mm	
D ₉₀	147.5	mm	
D ₉₅	174.6	mm	

Site Name: 240 at Firehouse, West Vally (upper Buttermilk Creek)

Location: 42°23'48.0"N 78°36'39.6"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	2	2%	2%
	5 - 8	2	2%	3%
Gravels	9 - 16	9	8%	11%
	17 - 32	31	26%	37%
	33 - 64	31	26%	64%
_	65 - 90	10	8%	72%
Cobbles	91 - 128	10	8%	81%
	129 - 180	5	4%	85%
	181 - 255	7	6%	91%
Boulders	256 - 512	11	9%	100%
	TOTALS:	118		

D ₁₀	14.9	mm	
D ₁₆	19.0	mm	
D ₅₀	47.5	mm	
D ₈₄	170.8	mm	
D ₉₀	246.4	mm	
D ₉₅	374.2	mm	

Site Name: Upper Heinz Creek

Location: 42°27'15.1"N 78°37'43.2"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	5	5%	6%
Gravels	9 - 16	6	6%	11%
	17 - 32	18	17%	28%
	33 - 64	31	29%	57%
	65 - 90	11	10%	67%
Cobbles	91 - 128	11	10%	78%
	129 - 180	13	12%	90%
	181 - 255	4	4%	93%
Boulders	256 - 512	7	7%	100%
	TOTALS:	107		

Histogram

8 16 32 64 90 128 180 255 512

Sediment Size [mm]

 D_{10} 14.3 mm $D_{16} \\$ 20.6 $\,m\,m$ D_{50} 56.3 $m \, m \,$ D_{84} 155.5 $\,m\,m$ D_{90} 185.6 $m \, m \,$ D_{95} 315.6 mm

10%

5%

0%

Site Name: Near gas pipeline

Location: 42°27'15.1"N 78°37'43.1"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	3	3%	3%
_	2 - 4	4	4%	7%
	5 - 8	7	7%	13%
Gravels	9 - 16	14	13%	26%
	17 - 32	36	34%	60%
	33 - 64	25	23%	83%
	65 - 90	6	6%	89%
Cobbles	91 - 128	4	4%	93%
	129 - 180	3	3%	95%
	181 - 255	2	2%	97%
Boulders	256 - 512	3	3%	100%
	TOTALS:	107		

D ₁₀	6.1	mm	
D ₁₆	9.8	mm	
D ₅₀	27.3	mm	
D ₈₄	67.8	mm	
D ₉₀	102.4	mm	
D ₉₅	173.9	mm	

Site Name: Near gas pipeline

Location: 42°27'16.4"N 78°37'42.1"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	3	3%	3%
	5 - 8	6	6%	9%
Gravels	9 - 16	13	13%	21%
	17 - 32	27	26%	48%
	33 - 64	27	26%	74%
	65 - 90	8	8%	82%
Cobbles	91 - 128	5	5%	86%
	129 - 180	5	5%	91%
	181 - 255	4	4%	95%
Boulders	256 - 512	5	5%	100%
	TOTALS	103		

D ₁₀	8.8	mm	
D ₁₆	12.6	mm	
D ₅₀	35.0	mm	
D ₈₄	109.2	mm	
D ₉₀	166.5	mm	
D ₉₅	252.2	mm	

Site Name: Near gas pipeline

Location: 42°27'15.7"N 78°37'41.6"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	0	0%	0%
Gravels	9 - 16	5	5%	5%
	17 - 32	34	34%	39%
	33 - 64	44	44%	83%
	65 - 90	9	9%	92%
Cobbles	91 - 128	5	5%	97%
	129 - 180	3	3%	100%
	181 - 255	0	0%	100%
Boulders	256 - 512	0	0%	100%
	TOTALS	100		

D ₁₀	18.4	mm	
D ₁₆	21.2	mm	
D ₅₀	40.0	mm	
D ₈₄	66.9	mm	
D ₉₀	84.2	mm	
D ₉₅	112.8	mm	

Site Name: South East of Rock Springs Road and County Road 86-1 Intersection

Location: 42°26′21.7″N 78°38′56.0″W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	1	1%	2%
Gravels	9 - 16	8	7%	9%
	17 - 32	26	23%	32%
	33 - 64	31	28%	60%
	65 - 90	20	18%	78%
Cobbles	91 - 128	13	12%	89%
	129 - 180	6	5%	95%
	181 - 255	1	1%	96%
Boulders	256 - 512	5	4%	100%
	TOTALS:	112		

Particle Size Distribution

Histogram

D ₁₀	16.7	mm	
D ₁₆	20.9	mm	
D ₅₀	52.6	mm	
D ₈₄	110.7	mm	
D ₉₀	134.9	mm	
D ₉₅	210.0	mm	

Site Name: South East of Rock Springs Road and County Road 86-1 Intersection

Location: 42°26′21.5″N 78°38′53.9″W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	0	0%	0%
Gravels	9 - 16	1	1%	1%
	17 - 32	15	14%	15%
	33 - 64	21	19%	34%
	65 - 90	14	13%	46%
Cobbles	91 - 128	15	14%	60%
	129 - 180	18	16%	76%
	181 - 255	15	14%	90%
Boulders	256 - 512	11	10%	100%
	TOTALS:	110		

D ₁₀	26.7	mm	
D ₁₆	34.4	mm	
D ₅₀	100.1	mm	
D ₈₄	222.0	mm	
D ₉₀	255.0	mm	
D ₉₅	383.5	mm	

Site Name: South East of Rock Springs Road and County Road 86-1 Intersection

Location: 42°26′24.2″N 78°38′51.6″W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	1	1%	1%
Gravels	9 - 16	10	10%	11%
	17 - 32	26	25%	36%
	33 - 64	30	29%	65%
	65 - 90	23	22%	87%
Cobbles	91 - 128	9	9%	96%
	129 - 180	3	3%	99%
	181 - 255	1	1%	100%
Boulders	256 - 512	0	0%	100%
	TOTALS:	103		

D ₁₀	15.4	mm	
D ₁₆	19.4	mm	
D ₅₀	47.5	mm	
D ₈₄	86.1	mm	
D ₉₀	101.4	mm	
D ₉₅	123.1	mm	

South East of Rock Springs Road and County Road 86-1 Intersection Site Name:

Location: 42°26'25.4"N 78°38'47.3"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	3	3%	3%
Gravels	9 - 16	9	8%	11%
	17 - 32	31	28%	39%
	33 - 64	41	37%	76%
	65 - 90	12	11%	86%
Cobbles	91 - 128	6	5%	92%
	129 - 180	6	5%	97%
	181 - 255	2	2%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	111		

D ₁₀	15.2	mm	
D ₁₆	19.0	mm	
D ₅₀	41.8	mm	
D ₈₄	84.0	mm	
D ₉₀	114.7	mm	
D ₉₅	157.9	mm	

Site Name: Near Fox Valley Rd and Railroad intersection

Location: 42°26'00.8"N 78°37'51.8"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	3	3%	3%
	5 - 8	3	3%	5%
Gravels	9 - 16	7	6%	11%
	17 - 32	23	20%	32%
	33 - 64	38	33%	65%
	65 - 90	14	12%	77%
Cobbles	91 - 128	15	13%	90%
	129 - 180	4	4%	94%
	181 - 255	1	1%	95%
Boulders	256 - 512	6	5%	100%
	TOTALS:	114		

10 100 Particle Size [mm]

0%

1

D ₁₀	14.2	mm	
D ₁₆	19.6	mm	
D ₅₀	49.7	mm	
D ₈₄	109.7	mm	
D ₉₀	127.0	mm	
D ₉₅	267.9	mm	

1000

Site Name: Near Fox Valley Rd and Railroad intersection

Location: 42°26'02.1"N 78°37'53.7"W

Date: 6/22/2016

	Particle Size (mm)	Total #	%in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	1	1%	2%
	5 - 8	3	3%	4%
Gravels	9 - 16	8	7%	12%
	17 - 32	16	14%	26%
	33 - 64	36	32%	58%
	65 - 90	22	20%	78%
Cobbles	91 - 128	12	11%	88%
	129 - 180	9	8%	96%
	181 - 255	2	2%	98%
Boulders	256 - 512	2	2%	100%
	TOTALS:	112		

D ₁₀	14.2	mm	
D ₁₆	20.9	mm	
D ₅₀	56.0	mm	
D ₈₄	112.4	mm	
D ₉₀	138.4	mm	
D ₉₅	170.8	mm	

Site Name: Near Fox Valley Rd and Railroad intersection

Location: 42°25'59.7"N 78°37'47.7"W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	1	1%	2%
Gravels	9 - 16	5	5%	6%
	17 - 32	18	16%	23%
	33 - 64	35	32%	55%
	65 - 90	21	19%	74%
Cobbles	91 - 128	18	16%	90%
	129 - 180	7	6%	96%
	181 - 255	3	3%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	110		

D ₁₀	19.6	mm	
D ₁₆	25.4	mm	
D ₅₀	59.4	mm	
D ₈₄	114.1	mm	
D ₉₀	128.0	mm	
D ₉₅	168.9	mm	

Site Name: Heinz Creek

Location: 42°27'07.7"N 78°38'25.8"W

Date: 6/23/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	2	2%	2%
Gravels	9 - 16	8	8%	10%
	17 - 32	37	36%	46%
	33 - 64	35	34%	80%
	65 - 90	9	9%	88%
Cobbles	91 - 128	3	3%	91%
	129 - 180	3	3%	94%
	181 - 255	1	1%	95%
Boulders	256 - 512	5	5%	100%
	TOTALS	103		

D ₁₀	16.1	mm	
D ₁₆	18.8	mm	
D ₅₀	36.1	mm	
D ₈₄	77.1	mm	
D ₉₀	111.5	mm	
D ₉₅	243.7	mm	

Site Name: Heinz Creek

Location: 42°27'07.9"N 78°38'29.4"W

Date: 6/23/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	2	2%	2%
	5 - 8	0	0%	2%
Gravels	9 - 16	7	6%	8%
	17 - 32	25	21%	29%
	33 - 64	38	32%	62%
	65 - 90	9	8%	69%
Cobbles	91 - 128	11	9%	79%
	129 - 180	12	10%	89%
	181 - 255	5	4%	93%
Boulders	256 - 512	8	7%	100%
	TOTALS	117		

D ₁₀	17.7	mm	
D ₁₆	22.2	mm	
D ₅₀	52.6	mm	
D ₈₄	155.2	mm	
D ₉₀	199.5	mm	
D ₉₅	324.1	mm	

Site Name: Heinz Creek

Location: 42°27'06.2"N 78°38'30.9"W

Date: 6/23/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	3	2%	2%
Gravels	9 - 16	7	5%	8%
	17 - 32	42	33%	41%
	33 - 64	32	25%	66%
	65 - 90	15	12%	77%
Cobbles	91 - 128	18	14%	91%
	129 - 180	7	5%	97%
	181 - 255	3	2%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	128		

Histogram ^{35%} Ţ

		‡													
	30%	†													
	25%														
Range	20% 15%														
" in	15%]			
	10%														
	5%														
	0%	1	_	-	_	,	_	ļ.,	ļ.,					_	
			2	4	1	8	16	32	64	90	128	180	255	512	
						9	Sedi	mei	nt Si	ze [mm]			

D ₁₀	17.1	mm	
D ₁₆	20.0	mm	
D ₅₀	44.0	mm	
D ₈₄	108.0	mm	
D ₉₀	124.2	mm	
D ₉₅	162.2	mm	

Site Name: Buttermilk Creek

Location: 42°27'10.9"N 78°38'40.0"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	1	1%	2%
Gravels	9 - 16	12	10%	12%
	17 - 32	41	34%	46%
	33 - 64	38	32%	78%
	65 - 90	15	13%	90%
Cobbles	91 - 128	5	4%	94%
	129 - 180	4	3%	98%
	181 - 255	2	2%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	120		

D ₁₀	14.7	mm	
D ₁₆	18.0	mm	
D ₅₀	36.2	mm	
D ₈₄	77.5	mm	
D ₉₀	90.0	mm	
D ₉₅	141.0	mm	

Site Name: N. of fire hall, Buttermilk Location: 42°23'57.1"N 78°36'28.0"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	2	2%	3%
	5 - 8	6	5%	8%
Gravels	9 - 16	5	5%	13%
	17 - 32	21	19%	32%
	33 - 64	31	28%	59%
	65 - 90	16	14%	74%
Cobbles	91 - 128	12	11%	85%
	129 - 180	5	5%	89%
	181 - 255	3	3%	92%
Boulders	256 - 512	9	8%	100%
	TOTALS:	111		

D ₁₀	11.4	mm	
D ₁₆	18.9	mm	
D ₅₀	53.2	mm	
D ₈₄	125.6	mm	
D ₉₀	202.5	mm	
D ₉₅	353.5	mm	

Site Name: N. of fire hall, Buttermilk Location: 42°24'03.2"N 78°36'30.6"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	2	2%	2%
	5 - 8	1	1%	3%
Gravels	9 - 16	7	6%	8%
	17 - 32	21	18%	26%
	33 - 64	43	36%	62%
	65 - 90	20	17%	78%
Cobbles	91 - 128	14	12%	90%
	129 - 180	6	5%	95%
	181 - 255	3	3%	98%
Boulders	256 - 512	3	3%	100%
	TOTALS:	120		

D ₁₀	17.5	mm	
D ₁₆	23.0	mm	
D ₅₀	53.6	mm	
D ₈₄	108.5	mm	
D ₉₀	128.0	mm	
D ₉₅	180.0	mm	

Site Name: Buttermilk

Location: 42°25'39.9"N 78°37'30.6"W

Date: 7/12/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	1	1%	2%
	5 - 8	11	9%	11%
Gravels	9 - 16	11	9%	20%
	17 - 32	29	24%	44%
	33 - 64	22	18%	62%
	65 - 90	25	21%	83%
Cobbles	91 - 128	9	7%	90%
	129 - 180	8	7%	97%
	181 - 255	2	2%	98%
Boulders	256 - 512	2	2%	100%
	TOTALS:	121		

Histogram

D ₁₀	7.7	mm	
D ₁₆	12.6	mm	
D ₅₀	42.9	mm	
D ₈₄	96.9	mm	
D ₉₀	127.6	mm	
D ₉₅	166.7	mm	

Site Name: Cattaraugus Creek

Location: 42°28'51.8"N 78°40'54.5"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	9	7%	8%
Gravels	9 - 16	17	13%	20%
	17 - 32	23	17%	38%
	33 - 64	45	34%	72%
	65 - 90	12	9%	81%
Cobbles	91 - 128	15	11%	92%
	129 - 180	10	8%	100%
	181 - 255	0	0%	100%
Boulders	256 - 512	0	0%	100%
	TOTALS:	132		

D ₁₀	9.5	mm	
D ₁₆	13.2	mm	
D ₅₀	43.4	mm	
D ₈₄	99.8	mm	
D ₉₀	119.9	mm	
D ₉₅	145.7	mm	

Site Name: Cattaraugus Creek

Location: 42°29'43.9"N 78°38'26.7"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	2	2%	2%
	2 - 4	6	5%	7%
	5 - 8	22	19%	26%
Gravels	9 - 16	20	18%	44%
	17 - 32	27	24%	68%
	33 - 64	27	24%	91%
	65 - 90	8	7%	98%
Cobbles	91 - 128	2	2%	100%
	129 - 180	0	0%	100%
	181 - 255	0	0%	100%
Boulders	256 - 512	0	0%	100%
	TOTALS:	114		

D ₁₀	4.6	mm	
D ₁₆	5.9	mm	
D ₅₀	20.1	mm	
D ₈₄	54.2	mm	
D ₉₀	62.3	mm	
D ₉₅	78.0	mm	

Site Name: Gooseneck creek

Location: 42°26'17.1"N 78°37'54.2"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	10	10%	10%
Gravels	9 - 16	11	11%	21%
	17 - 32	21	21%	43%
	33 - 64	26	27%	69%
	65 - 90	12	12%	82%
Cobbles	91 - 128	9	9%	91%
	129 - 180	6	6%	97%
	181 - 255	2	2%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	98		

D ₁₀	7.9	mm	
D ₁₆	12.1	mm	
D ₅₀	40.6	mm	
D ₈₄	99.8	mm	
D ₉₀	124.6	mm	
D ₉₅	163.5	mm	

Site Name: Gooseneck creek

Location: 42°26'19.6"N 78°37'42.7"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	2	2%	2%
	2 - 4	0	0%	2%
	5 - 8	11	11%	13%
Gravels	9 - 16	6	6%	19%
	17 - 32	25	25%	44%
	33 - 64	23	23%	66%
	65 - 90	12	12%	78%
Cobbles	91 - 128	10	10%	88%
	129 - 180	8	8%	96%
	181 - 255	3	3%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS	101		

D ₁₀	6.9	mm	
D ₁₆	12.2	mm	
D ₅₀	41.0	mm	
D ₈₄	112.2	mm	
D ₉₀	140.4	mm	
D ₉₅	173.2	mm	

Site Name: Gooseneck creek

Location: 42°26'19.1"N 78°37'28.6"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	8	7%	7%
Gravels	9 - 16	9	8%	16%
	17 - 32	20	19%	34%
	33 - 64	25	23%	57%
	65 - 90	12	11%	69%
Cobbles	91 - 128	13	12%	81%
	129 - 180	13	12%	93%
	181 - 255	4	4%	96%
Boulders	256 - 512	4	4%	100%
	TOTALS:	108		

D ₁₀	10.5	mm	
D ₁₆	16.2	mm	
D ₅₀	53.8	mm	
D ₈₄	142.9	mm	
D ₉₀	168.8	mm	
D ₉₅	228.8	mm	

Site Name: Gooseneck creek

Location: 42°26′20.2″N 78°37′08.7″W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	2	2%	2%
	2 - 4	1	1%	3%
	5 - 8	7	7%	9%
Gravels	9 - 16	10	9%	19%
	17 - 32	17	16%	35%
	33 - 64	25	24%	58%
	65 - 90	12	11%	70%
Cobbles	91 - 128	11	10%	80%
	129 - 180	8	8%	88%
	181 - 255	4	4%	92%
Boulders	256 - 512	9	8%	100%
	TOTALS:	106		

D ₁₀	8.5	mm	
D ₁₆	13.6	mm	
D ₅₀	52.5	mm	
D ₈₄	154.3	mm	
D ₉₀	225.0	mm	
D ₉₅	360.7	mm	

Site Name: Gooseneck creek

Location: 42°26'34.3"N 78°36'51.5"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	2	2%	2%
	2 - 4	2	2%	4%
	5 - 8	8	8%	12%
Gravels	9 - 16	8	8%	19%
	17 - 32	12	12%	31%
	33 - 64	15	15%	46%
	65 - 90	11	11%	56%
Cobbles	91 - 128	11	11%	67%
	129 - 180	15	15%	82%
	181 - 255	12	12%	93%
Boulders	256 - 512	7	7%	100%
	TOTALS:	103		

D ₁₀	7.2	mm	
D ₁₆	12.5	mm	
D ₅₀	74.6	mm	
D ₈₄	195.8	mm	
D ₉₀	234.4	mm	
D ₉₅	322.9	mm	

Site Name: Gooseneck creek

Location: 42°26'37.0"N 78°36'38.5"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	6	5%	5%
	5 - 8	12	10%	15%
Gravels	9 - 16	15	13%	28%
	17 - 32	19	16%	44%
	33 - 64	28	24%	68%
	65 - 90	15	13%	81%
Cobbles	91 - 128	10	8%	89%
	129 - 180	6	5%	94%
	181 - 255	3	3%	97%
Boulders	256 - 512	4	3%	100%
	TOTALS:	118		

D ₁₀	5.9	mm	
D ₁₆	8.5	mm	
D ₅₀	40.0	mm	
D ₈₄	105.7	mm	
D ₉₀	138.4	mm	
D ₉₅	207.5	mm	

Site Name: Gooseneck creek

Location: 42°26'38.9"N 78°36'20.5"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	4	3%	3%
	2 - 4	6	5%	9%
	5 - 8	8	7%	15%
Gravels	9 - 16	10	9%	24%
	17 - 32	13	11%	35%
	33 - 64	15	13%	48%
	65 - 90	12	10%	58%
Cobbles	91 - 128	19	16%	74%
	129 - 180	10	9%	83%
	181 - 255	6	5%	88%
Boulders	256 - 512	14	12%	100%
	TOTALS	117		

D ₁₀	4.9	mm	
D ₁₆	8.6	mm	
D ₅₀	69.4	mm	
D ₈₄	196.0	mm	
D ₉₀	297.2	mm	
D ₉₅	404.6	mm	

Site Name: Gooseneck creek

Location: 42°26'42.7"N 78°36'08.1"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	2	2%	2%
	5 - 8	15	12%	13%
Gravels	9 - 16	12	10%	23%
	17 - 32	25	20%	43%
	33 - 64	27	21%	64%
	65 - 90	17	13%	78%
Cobbles	91 - 128	13	10%	88%
	129 - 180	5	4%	92%
	181 - 255	3	2%	94%
Boulders	256 - 512	7	6%	100%
	TOTALS:	126		

D ₁₀	6.8	mm	
D ₁₆	10.1	mm	
D ₅₀	42.7	mm	
D ₈₄	112.9	mm	
D ₉₀	153.0	mm	
D ₉₅	280.7	mm	

Site Name: Gooseneck creek

Location: 42°26′51.6″N 78°35′57.3″W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	9	8%	8%
Gravels	9 - 16	15	13%	21%
	17 - 32	17	15%	35%
	33 - 64	24	21%	56%
	65 - 90	20	17%	73%
Cobbles	91 - 128	4	3%	77%
	129 - 180	5	4%	81%
	181 - 255	8	7%	88%
Boulders	256 - 512	14	12%	100%
	TOTALS	: 116		

D ₁₀	9.4	mm	
D ₁₆	13.1	mm	
D ₅₀	54.7	mm	
D ₈₄	212.3	mm	
D ₉₀	299.1	mm	
D ₉₅	405.5	mm	

Site Name: Gooseneck creek

Location: 42°26'59.0"N 78°35'46.3"W

Date: 8/1/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	7	6%	7%
Gravels	9 - 16	7	6%	13%
	17 - 32	13	11%	24%
	33 - 64	17	15%	38%
	65 - 90	25	21%	60%
Cobbles	91 - 128	16	14%	74%
	129 - 180	10	9%	82%
	181 - 255	8	7%	89%
Boulders	256 - 512	13	11%	100%
	TOTALS:	117		

Particle Size Distribution

D ₁₀	12.2	mm	
D ₁₆	20.6	mm	
D ₅₀	78.0	mm	
D ₈₄	201.4	mm	
D ₉₀	280.7	mm	
D ₉₅	396.4	mm	

Site Name: Gooseneck creek

Location: 42°27'04.4"N 78°35'32.2"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	0	0%	1%
	5 - 8	12	10%	10%
Gravels	9 - 16	14	11%	22%
	17 - 32	19	15%	37%
	33 - 64	19	15%	52%
	65 - 90	19	15%	67%
Cobbles	91 - 128	16	13%	80%
	129 - 180	7	6%	86%
	181 - 255	8	6%	92%
Boulders	256 - 512	10	8%	100%
	TOTALS:	125		

D ₁₀	7.8	mm	
D ₁₆	12.0	mm	
D ₅₀	59.8	mm	
D ₈₄	165.1	mm	
D ₉₀	231.6	mm	
D ₉₅	351.4	mm	

Site Name: Gooseneck Creek

Location: 42°27'08.9"N 78°35'18.4"W

Date: 8/1/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	15	14%	15%
Gravels	9 - 16	7	6%	21%
	17 - 32	24	22%	44%
	33 - 64	37	34%	78%
	65 - 90	14	13%	91%
Cobbles	91 - 128	7	6%	97%
	129 - 180	3	3%	100%
	181 - 255	0	0%	100%
Boulders	256 - 512	0	0%	100%
	TOTALS:	108		

Particle Size Distribution

Histogram

D ₁₀	6.6	mm	
D ₁₆	9.5	mm	
D ₅₀	38.1	mm	
D ₈₄	76.5	mm	
D ₉₀	88.5	mm	
D ₉₅	115.0	mm	

Site Name: Gooseneck Creek

Location: 42°27′13.7″N 78°35′04.1″W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	4	4%	5%
Gravels	9 - 16	9	9%	14%
	17 - 32	10	10%	24%
	33 - 64	23	23%	47%
	65 - 90	11	11%	57%
Cobbles	91 - 128	16	16%	73%
	129 - 180	14	14%	87%
	181 - 255	6	6%	93%
Boulders	256 - 512	7	7%	100%
	TOTALS	101		

D ₁₀	12.5	mm	
D ₁₆	19.5	mm	
D ₅₀	72.3	mm	
D ₈₄	168.3	mm	
D ₉₀	216.3	mm	
D ₉₅	326.6	mm	

Site Name: Creek leading into buttermilk Location: 42°27'16.4"N 78°37'40.4"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	6	5%	6%
Gravels	9 - 16	18	16%	22%
	17 - 32	26	23%	44%
	33 - 64	27	23%	68%
	65 - 90	14	12%	80%
Cobbles	91 - 128	6	5%	85%
	129 - 180	7	6%	91%
	181 - 255	4	3%	95%
Boulders	256 - 512	6	5%	100%
	TOTALS:	115		

D ₁₀	10.0	mm	
D ₁₆	13.1	mm	
D ₅₀	39.7	mm	
D ₈₄	119.1	mm	
D ₉₀	168.9	mm	
D ₉₅	265.7	mm	

Site Name: Creek leading into buttermilk Location: 42°27'15.7"N 78°38'12.2"W

_	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	0	0%	0%
	5 - 8	2	2%	2%
Gravels	9 - 16	9	8%	10%
	17 - 32	9	8%	19%
	33 - 64	13	12%	31%
	65 - 90	14	13%	44%
Cobbles	91 - 128	16	15%	59%
	129 - 180	25	24%	83%
	181 - 255	8	8%	91%
Boulders	256 - 512	10	9%	100%
	TOTALS:	106		

D ₁₀	15.6	mm	
D ₁₆	26.6	mm	
D ₅₀	104.3	mm	
D ₈₄	189.8	mm	
D ₉₀	249.4	mm	
D ₉₅	375.8	mm	

Site Name: Creek leading into buttermilk Location: 42°27'17.2"N 78°37'41.0"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	2	2%	3%
	5 - 8	5	4%	7%
Gravels	9 - 16	7	6%	13%
	17 - 32	12	11%	24%
	33 - 64	26	23%	47%
	65 - 90	22	20%	67%
Cobbles	91 - 128	15	13%	80%
	129 - 180	8	7%	88%
	181 - 255	7	6%	94%
Boulders	256 - 512	7	6%	100%
	TOTALS:	112		

D ₁₀	11.7	mm	
D ₁₆	19.9	mm	
D ₅₀	67.5	mm	
D ₈₄	154.5	mm	
D ₉₀	210.0	mm	
D ₉₅	306.4	mm	

Site Name: Creek leading into buttermilk Location: 42°27'10.6"N 78°38'25.4"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	3	3%	3%
	2 - 4	2	2%	4%
	5 - 8	16	14%	18%
Gravels	9 - 16	21	18%	37%
	17 - 32	20	17%	54%
	33 - 64	20	17%	71%
	65 - 90	10	9%	80%
Cobbles	91 - 128	5	4%	84%
	129 - 180	6	5%	90%
	181 - 255	6	5%	95%
Boulders	256 - 512	6	5%	100%
	TOTALS	115		

D ₁₀	5.6	mm	
D ₁₆	7.4	mm	
D ₅₀	28.4	mm	
D ₈₄	125.0	mm	
D ₉₀	186.3	mm	
D ₉₅	265.7	mm	

Site Name: Creek leading into buttermilk Location: 42°27'05.2"N 78°38'33.3"W

Date: 8/3/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	2	2%	3%
	5 - 8	1	1%	4%
Gravels	9 - 16	10	10%	14%
	17 - 32	7	7%	20%
	33 - 64	15	15%	35%
	65 - 90	13	13%	48%
Cobbles	91 - 128	9	9%	56%
	129 - 180	14	14%	70%
	181 - 255	13	13%	83%
Boulders	256 - 512	18	17%	100%
	TOTALS	103		

Sediment Size [mm]

D ₁₀	13.0	mm	
D ₁₆	21.7	mm	
D ₅₀	100.6	mm	
D ₈₄	276.7	mm	
D ₉₀	364.9	mm	
D ₉₅	438.5	mm	

Site Name: Buttermilk

Location: 42°27'31.1"N 78°38'44.1"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	8	7%	8%
Gravels	9 - 16	10	9%	17%
	17 - 32	11	10%	27%
	33 - 64	12	11%	38%
	65 - 90	17	15%	53%
Cobbles	91 - 128	7	6%	59%
	129 - 180	14	13%	71%
	181 - 255	22	20%	91%
Boulders	256 - 512	10	9%	100%
	TOTALS:	112		

D ₁₀	9.8	mm	
D ₁₆	15.1	mm	
D ₅₀	85.4	mm	
D ₈₄	228.0	mm	
D ₉₀	250.9	mm	
D ₉₅	368.1	mm	

Site Name: Buttermilk

Location: 42°26'53.9"N 78°38'30.4"W

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	1	1%	1%
	2 - 4	1	1%	2%
	5 - 8	5	5%	7%
Gravels	9 - 16	10	9%	16%
	17 - 32	18	17%	33%
	33 - 64	20	19%	52%
	65 - 90	23	22%	74%
Cobbles	91 - 128	15	14%	88%
	129 - 180	6	6%	93%
	181 - 255	2	2%	95%
Boulders	256 - 512	5	5%	100%
	TOTALS	106		

D ₁₀	10.9	mm	
D ₁₆	16.0	mm	
D ₅₀	60.8	mm	
D ₈₄	118.0	mm	
D ₉₀	148.8	mm	
D ₉₅	243.8	mm	

Site Name: Near Fox Valley Rd and Railroad intersection

Location: 42°25′59.7″N 78°37′47.7″W

Date: 6/22/2016

	Particle Size (mm)	Total #	% in Range	% Finer
Sand and Silt	< 2	0	0%	0%
	2 - 4	1	1%	1%
	5 - 8	1	1%	2%
Gravels	9 - 16	5	5%	6%
	17 - 32	18	16%	23%
	33 - 64	35	32%	55%
_	65 - 90	21	19%	74%
Cobbles	91 - 128	18	16%	90%
	129 - 180	7	6%	96%
	181 - 255	3	3%	99%
Boulders	256 - 512	1	1%	100%
	TOTALS:	110		

D ₁₀	19.6	mm	
D ₁₆	25.4	mm	
D ₅₀	59.4	mm	
D ₈₄	114.1	mm	
D ₉₀	128.0	mm	
D ₉₅	168.9	mm	